Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummpt2d Structured version   Visualization version   GIF version

Theorem gsummpt2d 31211
Description: Express a finite sum over a two-dimensional range as a double sum. See also gsum2d 19488. (Contributed by Thierry Arnoux, 27-Apr-2020.)
Hypotheses
Ref Expression
gsummpt2d.c 𝑧𝐶
gsummpt2d.0 𝑦𝜑
gsummpt2d.b 𝐵 = (Base‘𝑊)
gsummpt2d.1 (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)
gsummpt2d.r (𝜑 → Rel 𝐴)
gsummpt2d.2 (𝜑𝐴 ∈ Fin)
gsummpt2d.m (𝜑𝑊 ∈ CMnd)
gsummpt2d.3 ((𝜑𝑥𝐴) → 𝐶𝐵)
Assertion
Ref Expression
gsummpt2d (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑦,𝐶   𝑥,𝐷   𝑥,𝑊,𝑦   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑥,𝑧)   𝐷(𝑦,𝑧)   𝑊(𝑧)

Proof of Theorem gsummpt2d
StepHypRef Expression
1 gsummpt2d.b . . 3 𝐵 = (Base‘𝑊)
2 eqid 2738 . . 3 (0g𝑊) = (0g𝑊)
3 gsummpt2d.m . . 3 (𝜑𝑊 ∈ CMnd)
4 gsummpt2d.2 . . 3 (𝜑𝐴 ∈ Fin)
54dmexd 7726 . . 3 (𝜑 → dom 𝐴 ∈ V)
6 gsummpt2d.3 . . 3 ((𝜑𝑥𝐴) → 𝐶𝐵)
7 gsummpt2d.r . . . 4 (𝜑 → Rel 𝐴)
8 1stdm 7854 . . . 4 ((Rel 𝐴𝑥𝐴) → (1st𝑥) ∈ dom 𝐴)
97, 8sylan 579 . . 3 ((𝜑𝑥𝐴) → (1st𝑥) ∈ dom 𝐴)
10 fo1st 7824 . . . . . 6 1st :V–onto→V
11 fofn 6674 . . . . . 6 (1st :V–onto→V → 1st Fn V)
12 dffn5 6810 . . . . . . 7 (1st Fn V ↔ 1st = (𝑥 ∈ V ↦ (1st𝑥)))
1312biimpi 215 . . . . . 6 (1st Fn V → 1st = (𝑥 ∈ V ↦ (1st𝑥)))
1410, 11, 13mp2b 10 . . . . 5 1st = (𝑥 ∈ V ↦ (1st𝑥))
1514reseq1i 5876 . . . 4 (1st𝐴) = ((𝑥 ∈ V ↦ (1st𝑥)) ↾ 𝐴)
16 ssv 3941 . . . . 5 𝐴 ⊆ V
17 resmpt 5934 . . . . 5 (𝐴 ⊆ V → ((𝑥 ∈ V ↦ (1st𝑥)) ↾ 𝐴) = (𝑥𝐴 ↦ (1st𝑥)))
1816, 17ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ (1st𝑥)) ↾ 𝐴) = (𝑥𝐴 ↦ (1st𝑥))
1915, 18eqtri 2766 . . 3 (1st𝐴) = (𝑥𝐴 ↦ (1st𝑥))
201, 2, 3, 4, 5, 6, 9, 19gsummpt2co 31210 . 2 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶)))))
21 gsummpt2d.0 . . . 4 𝑦𝜑
223adantr 480 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → 𝑊 ∈ CMnd)
234adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → 𝐴 ∈ Fin)
24 imaexg 7736 . . . . . . 7 (𝐴 ∈ Fin → (𝐴 “ {𝑦}) ∈ V)
2523, 24syl 17 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → (𝐴 “ {𝑦}) ∈ V)
26 gsummpt2d.1 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)
2726adantl 481 . . . . . . . . 9 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝐶 = 𝐷)
28 simp-4l 779 . . . . . . . . . 10 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝜑)
29 simplr 765 . . . . . . . . . 10 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝑥𝐴)
3028, 29, 6syl2anc 583 . . . . . . . . 9 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝐶𝐵)
3127, 30eqeltrrd 2840 . . . . . . . 8 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝐷𝐵)
32 vex 3426 . . . . . . . . . . . 12 𝑦 ∈ V
33 vex 3426 . . . . . . . . . . . 12 𝑧 ∈ V
3432, 33elimasn 5986 . . . . . . . . . . 11 (𝑧 ∈ (𝐴 “ {𝑦}) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴)
3534biimpi 215 . . . . . . . . . 10 (𝑧 ∈ (𝐴 “ {𝑦}) → ⟨𝑦, 𝑧⟩ ∈ 𝐴)
3635adantl 481 . . . . . . . . 9 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → ⟨𝑦, 𝑧⟩ ∈ 𝐴)
37 simpr 484 . . . . . . . . . 10 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝑥 = ⟨𝑦, 𝑧⟩)
3837eqeq1d 2740 . . . . . . . . 9 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → (𝑥 = ⟨𝑦, 𝑧⟩ ↔ ⟨𝑦, 𝑧⟩ = ⟨𝑦, 𝑧⟩))
39 eqidd 2739 . . . . . . . . 9 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → ⟨𝑦, 𝑧⟩ = ⟨𝑦, 𝑧⟩)
4036, 38, 39rspcedvd 3555 . . . . . . . 8 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → ∃𝑥𝐴 𝑥 = ⟨𝑦, 𝑧⟩)
4131, 40r19.29a 3217 . . . . . . 7 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → 𝐷𝐵)
4241fmpttd 6971 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷):(𝐴 “ {𝑦})⟶𝐵)
43 eqid 2738 . . . . . . 7 (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) = (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)
44 imafi2 30948 . . . . . . . . 9 (𝐴 ∈ Fin → (𝐴 “ {𝑦}) ∈ Fin)
454, 44syl 17 . . . . . . . 8 (𝜑 → (𝐴 “ {𝑦}) ∈ Fin)
4645adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → (𝐴 “ {𝑦}) ∈ Fin)
47 fvex 6769 . . . . . . . 8 (0g𝑊) ∈ V
4847a1i 11 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → (0g𝑊) ∈ V)
4943, 46, 41, 48fsuppmptdm 9069 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) finSupp (0g𝑊))
50 2ndconst 7912 . . . . . . . 8 (𝑦 ∈ dom 𝐴 → (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}))
5150adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}))
52 1stpreimas 30940 . . . . . . . . . 10 ((Rel 𝐴𝑦 ∈ dom 𝐴) → ((1st𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦})))
537, 52sylan 579 . . . . . . . . 9 ((𝜑𝑦 ∈ dom 𝐴) → ((1st𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦})))
5453reseq2d 5880 . . . . . . . 8 ((𝜑𝑦 ∈ dom 𝐴) → (2nd ↾ ((1st𝐴) “ {𝑦})) = (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))))
5554f1oeq1d 6695 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → ((2nd ↾ ((1st𝐴) “ {𝑦})):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}) ↔ (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦})))
5651, 55mpbird 256 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → (2nd ↾ ((1st𝐴) “ {𝑦})):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}))
571, 2, 22, 25, 42, 49, 56gsumf1o 19432 . . . . 5 ((𝜑𝑦 ∈ dom 𝐴) → (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)) = (𝑊 Σg ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ ((1st𝐴) “ {𝑦})))))
58 simpr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → 𝑥 ∈ ((1st𝐴) “ {𝑦}))
5953adantr 480 . . . . . . . . . . 11 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → ((1st𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦})))
6058, 59eleqtrd 2841 . . . . . . . . . 10 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → 𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})))
61 xp2nd 7837 . . . . . . . . . 10 (𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) → (2nd𝑥) ∈ (𝐴 “ {𝑦}))
6260, 61syl 17 . . . . . . . . 9 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → (2nd𝑥) ∈ (𝐴 “ {𝑦}))
6362ralrimiva 3107 . . . . . . . 8 ((𝜑𝑦 ∈ dom 𝐴) → ∀𝑥 ∈ ((1st𝐴) “ {𝑦})(2nd𝑥) ∈ (𝐴 “ {𝑦}))
64 fo2nd 7825 . . . . . . . . . . . 12 2nd :V–onto→V
65 fofn 6674 . . . . . . . . . . . 12 (2nd :V–onto→V → 2nd Fn V)
66 dffn5 6810 . . . . . . . . . . . . 13 (2nd Fn V ↔ 2nd = (𝑥 ∈ V ↦ (2nd𝑥)))
6766biimpi 215 . . . . . . . . . . . 12 (2nd Fn V → 2nd = (𝑥 ∈ V ↦ (2nd𝑥)))
6864, 65, 67mp2b 10 . . . . . . . . . . 11 2nd = (𝑥 ∈ V ↦ (2nd𝑥))
6968reseq1i 5876 . . . . . . . . . 10 (2nd ↾ ((1st𝐴) “ {𝑦})) = ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ((1st𝐴) “ {𝑦}))
70 ssv 3941 . . . . . . . . . . 11 ((1st𝐴) “ {𝑦}) ⊆ V
71 resmpt 5934 . . . . . . . . . . 11 (((1st𝐴) “ {𝑦}) ⊆ V → ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ((1st𝐴) “ {𝑦})) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥)))
7270, 71ax-mp 5 . . . . . . . . . 10 ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ((1st𝐴) “ {𝑦})) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥))
7369, 72eqtri 2766 . . . . . . . . 9 (2nd ↾ ((1st𝐴) “ {𝑦})) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥))
7473a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ dom 𝐴) → (2nd ↾ ((1st𝐴) “ {𝑦})) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥)))
75 eqidd 2739 . . . . . . . 8 ((𝜑𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) = (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))
7663, 74, 75fmptcos 6985 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ ((1st𝐴) “ {𝑦}))) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥) / 𝑧𝐷))
77 nfv 1918 . . . . . . . . 9 𝑧((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦}))
78 gsummpt2d.c . . . . . . . . . 10 𝑧𝐶
7978a1i 11 . . . . . . . . 9 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → 𝑧𝐶)
8060adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})))
81 xp1st 7836 . . . . . . . . . . . . . 14 (𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) → (1st𝑥) ∈ {𝑦})
8280, 81syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → (1st𝑥) ∈ {𝑦})
83 fvex 6769 . . . . . . . . . . . . . 14 (1st𝑥) ∈ V
8483elsn 4573 . . . . . . . . . . . . 13 ((1st𝑥) ∈ {𝑦} ↔ (1st𝑥) = 𝑦)
8582, 84sylib 217 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → (1st𝑥) = 𝑦)
86 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝑧 = (2nd𝑥))
8786eqcomd 2744 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → (2nd𝑥) = 𝑧)
88 eqopi 7840 . . . . . . . . . . . 12 ((𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) ∧ ((1st𝑥) = 𝑦 ∧ (2nd𝑥) = 𝑧)) → 𝑥 = ⟨𝑦, 𝑧⟩)
8980, 85, 87, 88syl12anc 833 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝑥 = ⟨𝑦, 𝑧⟩)
9089, 26syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝐶 = 𝐷)
9190eqcomd 2744 . . . . . . . . 9 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝐷 = 𝐶)
9277, 79, 62, 91csbiedf 3859 . . . . . . . 8 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → (2nd𝑥) / 𝑧𝐷 = 𝐶)
9392mpteq2dva 5170 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥) / 𝑧𝐷) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶))
9476, 93eqtrd 2778 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ ((1st𝐴) “ {𝑦}))) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶))
9594oveq2d 7271 . . . . 5 ((𝜑𝑦 ∈ dom 𝐴) → (𝑊 Σg ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ ((1st𝐴) “ {𝑦})))) = (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶)))
9657, 95eqtr2d 2779 . . . 4 ((𝜑𝑦 ∈ dom 𝐴) → (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶)) = (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))
9721, 96mpteq2da 5168 . . 3 (𝜑 → (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶))) = (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))))
9897oveq2d 7271 . 2 (𝜑 → (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶)))) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))))
9920, 98eqtrd 2778 1 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886  Vcvv 3422  csb 3828  wss 3883  {csn 4558  cop 4564  cmpt 5153   × cxp 5578  ccnv 5579  dom cdm 5580  cres 5582  cima 5583  ccom 5584  Rel wrel 5585   Fn wfn 6413  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Fincfn 8691  Basecbs 16840  0gc0g 17067   Σg cgsu 17068  CMndccmn 19301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303
This theorem is referenced by:  gsumhashmul  31218  esum2d  31961
  Copyright terms: Public domain W3C validator