Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummpt2d Structured version   Visualization version   GIF version

Theorem gsummpt2d 32188
Description: Express a finite sum over a two-dimensional range as a double sum. See also gsum2d 19834. (Contributed by Thierry Arnoux, 27-Apr-2020.)
Hypotheses
Ref Expression
gsummpt2d.c 𝑧𝐶
gsummpt2d.0 𝑦𝜑
gsummpt2d.b 𝐵 = (Base‘𝑊)
gsummpt2d.1 (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)
gsummpt2d.r (𝜑 → Rel 𝐴)
gsummpt2d.2 (𝜑𝐴 ∈ Fin)
gsummpt2d.m (𝜑𝑊 ∈ CMnd)
gsummpt2d.3 ((𝜑𝑥𝐴) → 𝐶𝐵)
Assertion
Ref Expression
gsummpt2d (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑦,𝐶   𝑥,𝐷   𝑥,𝑊,𝑦   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑥,𝑧)   𝐷(𝑦,𝑧)   𝑊(𝑧)

Proof of Theorem gsummpt2d
StepHypRef Expression
1 gsummpt2d.b . . 3 𝐵 = (Base‘𝑊)
2 eqid 2732 . . 3 (0g𝑊) = (0g𝑊)
3 gsummpt2d.m . . 3 (𝜑𝑊 ∈ CMnd)
4 gsummpt2d.2 . . 3 (𝜑𝐴 ∈ Fin)
54dmexd 7892 . . 3 (𝜑 → dom 𝐴 ∈ V)
6 gsummpt2d.3 . . 3 ((𝜑𝑥𝐴) → 𝐶𝐵)
7 gsummpt2d.r . . . 4 (𝜑 → Rel 𝐴)
8 1stdm 8022 . . . 4 ((Rel 𝐴𝑥𝐴) → (1st𝑥) ∈ dom 𝐴)
97, 8sylan 580 . . 3 ((𝜑𝑥𝐴) → (1st𝑥) ∈ dom 𝐴)
10 fo1st 7991 . . . . . 6 1st :V–onto→V
11 fofn 6804 . . . . . 6 (1st :V–onto→V → 1st Fn V)
12 dffn5 6947 . . . . . . 7 (1st Fn V ↔ 1st = (𝑥 ∈ V ↦ (1st𝑥)))
1312biimpi 215 . . . . . 6 (1st Fn V → 1st = (𝑥 ∈ V ↦ (1st𝑥)))
1410, 11, 13mp2b 10 . . . . 5 1st = (𝑥 ∈ V ↦ (1st𝑥))
1514reseq1i 5975 . . . 4 (1st𝐴) = ((𝑥 ∈ V ↦ (1st𝑥)) ↾ 𝐴)
16 ssv 4005 . . . . 5 𝐴 ⊆ V
17 resmpt 6035 . . . . 5 (𝐴 ⊆ V → ((𝑥 ∈ V ↦ (1st𝑥)) ↾ 𝐴) = (𝑥𝐴 ↦ (1st𝑥)))
1816, 17ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ (1st𝑥)) ↾ 𝐴) = (𝑥𝐴 ↦ (1st𝑥))
1915, 18eqtri 2760 . . 3 (1st𝐴) = (𝑥𝐴 ↦ (1st𝑥))
201, 2, 3, 4, 5, 6, 9, 19gsummpt2co 32187 . 2 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶)))))
21 gsummpt2d.0 . . . 4 𝑦𝜑
223adantr 481 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → 𝑊 ∈ CMnd)
234adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → 𝐴 ∈ Fin)
24 imaexg 7902 . . . . . . 7 (𝐴 ∈ Fin → (𝐴 “ {𝑦}) ∈ V)
2523, 24syl 17 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → (𝐴 “ {𝑦}) ∈ V)
26 gsummpt2d.1 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)
2726adantl 482 . . . . . . . . 9 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝐶 = 𝐷)
28 simp-4l 781 . . . . . . . . . 10 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝜑)
29 simplr 767 . . . . . . . . . 10 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝑥𝐴)
3028, 29, 6syl2anc 584 . . . . . . . . 9 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝐶𝐵)
3127, 30eqeltrrd 2834 . . . . . . . 8 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝐷𝐵)
32 vex 3478 . . . . . . . . . . . 12 𝑦 ∈ V
33 vex 3478 . . . . . . . . . . . 12 𝑧 ∈ V
3432, 33elimasn 6085 . . . . . . . . . . 11 (𝑧 ∈ (𝐴 “ {𝑦}) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴)
3534biimpi 215 . . . . . . . . . 10 (𝑧 ∈ (𝐴 “ {𝑦}) → ⟨𝑦, 𝑧⟩ ∈ 𝐴)
3635adantl 482 . . . . . . . . 9 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → ⟨𝑦, 𝑧⟩ ∈ 𝐴)
37 simpr 485 . . . . . . . . . 10 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝑥 = ⟨𝑦, 𝑧⟩)
3837eqeq1d 2734 . . . . . . . . 9 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → (𝑥 = ⟨𝑦, 𝑧⟩ ↔ ⟨𝑦, 𝑧⟩ = ⟨𝑦, 𝑧⟩))
39 eqidd 2733 . . . . . . . . 9 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → ⟨𝑦, 𝑧⟩ = ⟨𝑦, 𝑧⟩)
4036, 38, 39rspcedvd 3614 . . . . . . . 8 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → ∃𝑥𝐴 𝑥 = ⟨𝑦, 𝑧⟩)
4131, 40r19.29a 3162 . . . . . . 7 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → 𝐷𝐵)
4241fmpttd 7111 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷):(𝐴 “ {𝑦})⟶𝐵)
43 eqid 2732 . . . . . . 7 (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) = (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)
44 imafi2 31923 . . . . . . . . 9 (𝐴 ∈ Fin → (𝐴 “ {𝑦}) ∈ Fin)
454, 44syl 17 . . . . . . . 8 (𝜑 → (𝐴 “ {𝑦}) ∈ Fin)
4645adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → (𝐴 “ {𝑦}) ∈ Fin)
47 fvex 6901 . . . . . . . 8 (0g𝑊) ∈ V
4847a1i 11 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → (0g𝑊) ∈ V)
4943, 46, 41, 48fsuppmptdm 9370 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) finSupp (0g𝑊))
50 2ndconst 8083 . . . . . . . 8 (𝑦 ∈ dom 𝐴 → (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}))
5150adantl 482 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}))
52 1stpreimas 31914 . . . . . . . . . 10 ((Rel 𝐴𝑦 ∈ dom 𝐴) → ((1st𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦})))
537, 52sylan 580 . . . . . . . . 9 ((𝜑𝑦 ∈ dom 𝐴) → ((1st𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦})))
5453reseq2d 5979 . . . . . . . 8 ((𝜑𝑦 ∈ dom 𝐴) → (2nd ↾ ((1st𝐴) “ {𝑦})) = (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))))
5554f1oeq1d 6825 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → ((2nd ↾ ((1st𝐴) “ {𝑦})):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}) ↔ (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦})))
5651, 55mpbird 256 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → (2nd ↾ ((1st𝐴) “ {𝑦})):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}))
571, 2, 22, 25, 42, 49, 56gsumf1o 19778 . . . . 5 ((𝜑𝑦 ∈ dom 𝐴) → (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)) = (𝑊 Σg ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ ((1st𝐴) “ {𝑦})))))
58 simpr 485 . . . . . . . . . . 11 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → 𝑥 ∈ ((1st𝐴) “ {𝑦}))
5953adantr 481 . . . . . . . . . . 11 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → ((1st𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦})))
6058, 59eleqtrd 2835 . . . . . . . . . 10 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → 𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})))
61 xp2nd 8004 . . . . . . . . . 10 (𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) → (2nd𝑥) ∈ (𝐴 “ {𝑦}))
6260, 61syl 17 . . . . . . . . 9 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → (2nd𝑥) ∈ (𝐴 “ {𝑦}))
6362ralrimiva 3146 . . . . . . . 8 ((𝜑𝑦 ∈ dom 𝐴) → ∀𝑥 ∈ ((1st𝐴) “ {𝑦})(2nd𝑥) ∈ (𝐴 “ {𝑦}))
64 fo2nd 7992 . . . . . . . . . . . 12 2nd :V–onto→V
65 fofn 6804 . . . . . . . . . . . 12 (2nd :V–onto→V → 2nd Fn V)
66 dffn5 6947 . . . . . . . . . . . . 13 (2nd Fn V ↔ 2nd = (𝑥 ∈ V ↦ (2nd𝑥)))
6766biimpi 215 . . . . . . . . . . . 12 (2nd Fn V → 2nd = (𝑥 ∈ V ↦ (2nd𝑥)))
6864, 65, 67mp2b 10 . . . . . . . . . . 11 2nd = (𝑥 ∈ V ↦ (2nd𝑥))
6968reseq1i 5975 . . . . . . . . . 10 (2nd ↾ ((1st𝐴) “ {𝑦})) = ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ((1st𝐴) “ {𝑦}))
70 ssv 4005 . . . . . . . . . . 11 ((1st𝐴) “ {𝑦}) ⊆ V
71 resmpt 6035 . . . . . . . . . . 11 (((1st𝐴) “ {𝑦}) ⊆ V → ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ((1st𝐴) “ {𝑦})) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥)))
7270, 71ax-mp 5 . . . . . . . . . 10 ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ((1st𝐴) “ {𝑦})) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥))
7369, 72eqtri 2760 . . . . . . . . 9 (2nd ↾ ((1st𝐴) “ {𝑦})) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥))
7473a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ dom 𝐴) → (2nd ↾ ((1st𝐴) “ {𝑦})) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥)))
75 eqidd 2733 . . . . . . . 8 ((𝜑𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) = (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))
7663, 74, 75fmptcos 7125 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ ((1st𝐴) “ {𝑦}))) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥) / 𝑧𝐷))
77 nfv 1917 . . . . . . . . 9 𝑧((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦}))
78 gsummpt2d.c . . . . . . . . . 10 𝑧𝐶
7978a1i 11 . . . . . . . . 9 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → 𝑧𝐶)
8060adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})))
81 xp1st 8003 . . . . . . . . . . . . . 14 (𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) → (1st𝑥) ∈ {𝑦})
8280, 81syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → (1st𝑥) ∈ {𝑦})
83 fvex 6901 . . . . . . . . . . . . . 14 (1st𝑥) ∈ V
8483elsn 4642 . . . . . . . . . . . . 13 ((1st𝑥) ∈ {𝑦} ↔ (1st𝑥) = 𝑦)
8582, 84sylib 217 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → (1st𝑥) = 𝑦)
86 simpr 485 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝑧 = (2nd𝑥))
8786eqcomd 2738 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → (2nd𝑥) = 𝑧)
88 eqopi 8007 . . . . . . . . . . . 12 ((𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) ∧ ((1st𝑥) = 𝑦 ∧ (2nd𝑥) = 𝑧)) → 𝑥 = ⟨𝑦, 𝑧⟩)
8980, 85, 87, 88syl12anc 835 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝑥 = ⟨𝑦, 𝑧⟩)
9089, 26syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝐶 = 𝐷)
9190eqcomd 2738 . . . . . . . . 9 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝐷 = 𝐶)
9277, 79, 62, 91csbiedf 3923 . . . . . . . 8 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → (2nd𝑥) / 𝑧𝐷 = 𝐶)
9392mpteq2dva 5247 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥) / 𝑧𝐷) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶))
9476, 93eqtrd 2772 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ ((1st𝐴) “ {𝑦}))) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶))
9594oveq2d 7421 . . . . 5 ((𝜑𝑦 ∈ dom 𝐴) → (𝑊 Σg ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ ((1st𝐴) “ {𝑦})))) = (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶)))
9657, 95eqtr2d 2773 . . . 4 ((𝜑𝑦 ∈ dom 𝐴) → (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶)) = (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))
9721, 96mpteq2da 5245 . . 3 (𝜑 → (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶))) = (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))))
9897oveq2d 7421 . 2 (𝜑 → (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶)))) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))))
9920, 98eqtrd 2772 1 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  wnfc 2883  Vcvv 3474  csb 3892  wss 3947  {csn 4627  cop 4633  cmpt 5230   × cxp 5673  ccnv 5674  dom cdm 5675  cres 5677  cima 5678  ccom 5679  Rel wrel 5680   Fn wfn 6535  ontowfo 6538  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  Fincfn 8935  Basecbs 17140  0gc0g 17381   Σg cgsu 17382  CMndccmn 19642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-0g 17383  df-gsum 17384  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19644
This theorem is referenced by:  gsumhashmul  32195  esum2d  33079
  Copyright terms: Public domain W3C validator