Proof of Theorem gsummpt2d
| Step | Hyp | Ref
| Expression |
| 1 | | gsummpt2d.b |
. . 3
⊢ 𝐵 = (Base‘𝑊) |
| 2 | | eqid 2736 |
. . 3
⊢
(0g‘𝑊) = (0g‘𝑊) |
| 3 | | gsummpt2d.m |
. . 3
⊢ (𝜑 → 𝑊 ∈ CMnd) |
| 4 | | gsummpt2d.2 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 5 | 4 | dmexd 7904 |
. . 3
⊢ (𝜑 → dom 𝐴 ∈ V) |
| 6 | | gsummpt2d.3 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| 7 | | gsummpt2d.r |
. . . 4
⊢ (𝜑 → Rel 𝐴) |
| 8 | | 1stdm 8044 |
. . . 4
⊢ ((Rel
𝐴 ∧ 𝑥 ∈ 𝐴) → (1st ‘𝑥) ∈ dom 𝐴) |
| 9 | 7, 8 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1st ‘𝑥) ∈ dom 𝐴) |
| 10 | | fo1st 8013 |
. . . . . 6
⊢
1st :V–onto→V |
| 11 | | fofn 6797 |
. . . . . 6
⊢
(1st :V–onto→V → 1st Fn V) |
| 12 | | dffn5 6942 |
. . . . . . 7
⊢
(1st Fn V ↔ 1st = (𝑥 ∈ V ↦ (1st
‘𝑥))) |
| 13 | 12 | biimpi 216 |
. . . . . 6
⊢
(1st Fn V → 1st = (𝑥 ∈ V ↦ (1st
‘𝑥))) |
| 14 | 10, 11, 13 | mp2b 10 |
. . . . 5
⊢
1st = (𝑥
∈ V ↦ (1st ‘𝑥)) |
| 15 | 14 | reseq1i 5967 |
. . . 4
⊢
(1st ↾ 𝐴) = ((𝑥 ∈ V ↦ (1st
‘𝑥)) ↾ 𝐴) |
| 16 | | ssv 3988 |
. . . . 5
⊢ 𝐴 ⊆ V |
| 17 | | resmpt 6029 |
. . . . 5
⊢ (𝐴 ⊆ V → ((𝑥 ∈ V ↦
(1st ‘𝑥))
↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) |
| 18 | 16, 17 | ax-mp 5 |
. . . 4
⊢ ((𝑥 ∈ V ↦
(1st ‘𝑥))
↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) |
| 19 | 15, 18 | eqtri 2759 |
. . 3
⊢
(1st ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) |
| 20 | 1, 2, 3, 4, 5, 6, 9, 19 | gsummpt2co 33047 |
. 2
⊢ (𝜑 → (𝑊 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶))))) |
| 21 | | gsummpt2d.0 |
. . . 4
⊢
Ⅎ𝑦𝜑 |
| 22 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → 𝑊 ∈ CMnd) |
| 23 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → 𝐴 ∈ Fin) |
| 24 | | imaexg 7914 |
. . . . . . 7
⊢ (𝐴 ∈ Fin → (𝐴 “ {𝑦}) ∈ V) |
| 25 | 23, 24 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝐴 “ {𝑦}) ∈ V) |
| 26 | | gsummpt2d.1 |
. . . . . . . . . 10
⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) |
| 27 | 26 | adantl 481 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝐶 = 𝐷) |
| 28 | | simp-4l 782 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝜑) |
| 29 | | simplr 768 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝑥 ∈ 𝐴) |
| 30 | 28, 29, 6 | syl2anc 584 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝐶 ∈ 𝐵) |
| 31 | 27, 30 | eqeltrrd 2836 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝐷 ∈ 𝐵) |
| 32 | | vex 3468 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
| 33 | | vex 3468 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ V |
| 34 | 32, 33 | elimasn 6082 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝐴 “ {𝑦}) ↔ 〈𝑦, 𝑧〉 ∈ 𝐴) |
| 35 | 34 | biimpi 216 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝐴 “ {𝑦}) → 〈𝑦, 𝑧〉 ∈ 𝐴) |
| 36 | 35 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → 〈𝑦, 𝑧〉 ∈ 𝐴) |
| 37 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝑥 = 〈𝑦, 𝑧〉) |
| 38 | 37 | eqeq1d 2738 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 = 〈𝑦, 𝑧〉) → (𝑥 = 〈𝑦, 𝑧〉 ↔ 〈𝑦, 𝑧〉 = 〈𝑦, 𝑧〉)) |
| 39 | | eqidd 2737 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → 〈𝑦, 𝑧〉 = 〈𝑦, 𝑧〉) |
| 40 | 36, 38, 39 | rspcedvd 3608 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → ∃𝑥 ∈ 𝐴 𝑥 = 〈𝑦, 𝑧〉) |
| 41 | 31, 40 | r19.29a 3149 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → 𝐷 ∈ 𝐵) |
| 42 | 41 | fmpttd 7110 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷):(𝐴 “ {𝑦})⟶𝐵) |
| 43 | | eqid 2736 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) = (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) |
| 44 | | imafi2 32694 |
. . . . . . . . 9
⊢ (𝐴 ∈ Fin → (𝐴 “ {𝑦}) ∈ Fin) |
| 45 | 4, 44 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 “ {𝑦}) ∈ Fin) |
| 46 | 45 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝐴 “ {𝑦}) ∈ Fin) |
| 47 | | fvex 6894 |
. . . . . . . 8
⊢
(0g‘𝑊) ∈ V |
| 48 | 47 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (0g‘𝑊) ∈ V) |
| 49 | 43, 46, 41, 48 | fsuppmptdm 9393 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) finSupp (0g‘𝑊)) |
| 50 | | 2ndconst 8105 |
. . . . . . . 8
⊢ (𝑦 ∈ dom 𝐴 → (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦})) |
| 51 | 50 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦})) |
| 52 | | 1stpreimas 32688 |
. . . . . . . . . 10
⊢ ((Rel
𝐴 ∧ 𝑦 ∈ dom 𝐴) → (◡(1st ↾ 𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦}))) |
| 53 | 7, 52 | sylan 580 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (◡(1st ↾ 𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦}))) |
| 54 | 53 | reseq2d 5971 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})) = (2nd ↾ ({𝑦} × (𝐴 “ {𝑦})))) |
| 55 | 54 | f1oeq1d 6818 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → ((2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}) ↔ (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}))) |
| 56 | 51, 55 | mpbird 257 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦})) |
| 57 | 1, 2, 22, 25, 42, 49, 56 | gsumf1o 19902 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)) = (𝑊 Σg ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦}))))) |
| 58 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) |
| 59 | 53 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → (◡(1st ↾ 𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦}))) |
| 60 | 58, 59 | eleqtrd 2837 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → 𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦}))) |
| 61 | | xp2nd 8026 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) → (2nd ‘𝑥) ∈ (𝐴 “ {𝑦})) |
| 62 | 60, 61 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → (2nd ‘𝑥) ∈ (𝐴 “ {𝑦})) |
| 63 | 62 | ralrimiva 3133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → ∀𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})(2nd ‘𝑥) ∈ (𝐴 “ {𝑦})) |
| 64 | | fo2nd 8014 |
. . . . . . . . . . . 12
⊢
2nd :V–onto→V |
| 65 | | fofn 6797 |
. . . . . . . . . . . 12
⊢
(2nd :V–onto→V → 2nd Fn V) |
| 66 | | dffn5 6942 |
. . . . . . . . . . . . 13
⊢
(2nd Fn V ↔ 2nd = (𝑥 ∈ V ↦ (2nd
‘𝑥))) |
| 67 | 66 | biimpi 216 |
. . . . . . . . . . . 12
⊢
(2nd Fn V → 2nd = (𝑥 ∈ V ↦ (2nd
‘𝑥))) |
| 68 | 64, 65, 67 | mp2b 10 |
. . . . . . . . . . 11
⊢
2nd = (𝑥
∈ V ↦ (2nd ‘𝑥)) |
| 69 | 68 | reseq1i 5967 |
. . . . . . . . . 10
⊢
(2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})) = ((𝑥 ∈ V ↦ (2nd
‘𝑥)) ↾ (◡(1st ↾ 𝐴) “ {𝑦})) |
| 70 | | ssv 3988 |
. . . . . . . . . . 11
⊢ (◡(1st ↾ 𝐴) “ {𝑦}) ⊆ V |
| 71 | | resmpt 6029 |
. . . . . . . . . . 11
⊢ ((◡(1st ↾ 𝐴) “ {𝑦}) ⊆ V → ((𝑥 ∈ V ↦ (2nd
‘𝑥)) ↾ (◡(1st ↾ 𝐴) “ {𝑦})) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ (2nd ‘𝑥))) |
| 72 | 70, 71 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ V ↦
(2nd ‘𝑥))
↾ (◡(1st ↾ 𝐴) “ {𝑦})) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ (2nd ‘𝑥)) |
| 73 | 69, 72 | eqtri 2759 |
. . . . . . . . 9
⊢
(2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ (2nd ‘𝑥)) |
| 74 | 73 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ (2nd ‘𝑥))) |
| 75 | | eqidd 2737 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) = (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)) |
| 76 | 63, 74, 75 | fmptcos 7126 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦}))) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ ⦋(2nd
‘𝑥) / 𝑧⦌𝐷)) |
| 77 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑧((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) |
| 78 | | gsummpt2d.c |
. . . . . . . . . 10
⊢
Ⅎ𝑧𝐶 |
| 79 | 78 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → Ⅎ𝑧𝐶) |
| 80 | 60 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → 𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦}))) |
| 81 | | xp1st 8025 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) → (1st ‘𝑥) ∈ {𝑦}) |
| 82 | 80, 81 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → (1st ‘𝑥) ∈ {𝑦}) |
| 83 | | fvex 6894 |
. . . . . . . . . . . . . 14
⊢
(1st ‘𝑥) ∈ V |
| 84 | 83 | elsn 4621 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝑥) ∈ {𝑦} ↔ (1st ‘𝑥) = 𝑦) |
| 85 | 82, 84 | sylib 218 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → (1st ‘𝑥) = 𝑦) |
| 86 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → 𝑧 = (2nd ‘𝑥)) |
| 87 | 86 | eqcomd 2742 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → (2nd ‘𝑥) = 𝑧) |
| 88 | | eqopi 8029 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) ∧ ((1st ‘𝑥) = 𝑦 ∧ (2nd ‘𝑥) = 𝑧)) → 𝑥 = 〈𝑦, 𝑧〉) |
| 89 | 80, 85, 87, 88 | syl12anc 836 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → 𝑥 = 〈𝑦, 𝑧〉) |
| 90 | 89, 26 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → 𝐶 = 𝐷) |
| 91 | 90 | eqcomd 2742 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → 𝐷 = 𝐶) |
| 92 | 77, 79, 62, 91 | csbiedf 3909 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → ⦋(2nd
‘𝑥) / 𝑧⦌𝐷 = 𝐶) |
| 93 | 92 | mpteq2dva 5219 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ ⦋(2nd
‘𝑥) / 𝑧⦌𝐷) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶)) |
| 94 | 76, 93 | eqtrd 2771 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦}))) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶)) |
| 95 | 94 | oveq2d 7426 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑊 Σg ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})))) = (𝑊 Σg (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶))) |
| 96 | 57, 95 | eqtr2d 2772 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑊 Σg (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶)) = (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))) |
| 97 | 21, 96 | mpteq2da 5218 |
. . 3
⊢ (𝜑 → (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶))) = (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))) |
| 98 | 97 | oveq2d 7426 |
. 2
⊢ (𝜑 → (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶)))) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))))) |
| 99 | 20, 98 | eqtrd 2771 |
1
⊢ (𝜑 → (𝑊 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))))) |