Proof of Theorem gsummpt2d
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | gsummpt2d.b | . . 3
⊢ 𝐵 = (Base‘𝑊) | 
| 2 |  | eqid 2736 | . . 3
⊢
(0g‘𝑊) = (0g‘𝑊) | 
| 3 |  | gsummpt2d.m | . . 3
⊢ (𝜑 → 𝑊 ∈ CMnd) | 
| 4 |  | gsummpt2d.2 | . . 3
⊢ (𝜑 → 𝐴 ∈ Fin) | 
| 5 | 4 | dmexd 7926 | . . 3
⊢ (𝜑 → dom 𝐴 ∈ V) | 
| 6 |  | gsummpt2d.3 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) | 
| 7 |  | gsummpt2d.r | . . . 4
⊢ (𝜑 → Rel 𝐴) | 
| 8 |  | 1stdm 8066 | . . . 4
⊢ ((Rel
𝐴 ∧ 𝑥 ∈ 𝐴) → (1st ‘𝑥) ∈ dom 𝐴) | 
| 9 | 7, 8 | sylan 580 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1st ‘𝑥) ∈ dom 𝐴) | 
| 10 |  | fo1st 8035 | . . . . . 6
⊢
1st :V–onto→V | 
| 11 |  | fofn 6821 | . . . . . 6
⊢
(1st :V–onto→V → 1st Fn V) | 
| 12 |  | dffn5 6966 | . . . . . . 7
⊢
(1st Fn V ↔ 1st = (𝑥 ∈ V ↦ (1st
‘𝑥))) | 
| 13 | 12 | biimpi 216 | . . . . . 6
⊢
(1st Fn V → 1st = (𝑥 ∈ V ↦ (1st
‘𝑥))) | 
| 14 | 10, 11, 13 | mp2b 10 | . . . . 5
⊢
1st = (𝑥
∈ V ↦ (1st ‘𝑥)) | 
| 15 | 14 | reseq1i 5992 | . . . 4
⊢
(1st ↾ 𝐴) = ((𝑥 ∈ V ↦ (1st
‘𝑥)) ↾ 𝐴) | 
| 16 |  | ssv 4007 | . . . . 5
⊢ 𝐴 ⊆ V | 
| 17 |  | resmpt 6054 | . . . . 5
⊢ (𝐴 ⊆ V → ((𝑥 ∈ V ↦
(1st ‘𝑥))
↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) | 
| 18 | 16, 17 | ax-mp 5 | . . . 4
⊢ ((𝑥 ∈ V ↦
(1st ‘𝑥))
↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) | 
| 19 | 15, 18 | eqtri 2764 | . . 3
⊢
(1st ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) | 
| 20 | 1, 2, 3, 4, 5, 6, 9, 19 | gsummpt2co 33052 | . 2
⊢ (𝜑 → (𝑊 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶))))) | 
| 21 |  | gsummpt2d.0 | . . . 4
⊢
Ⅎ𝑦𝜑 | 
| 22 | 3 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → 𝑊 ∈ CMnd) | 
| 23 | 4 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → 𝐴 ∈ Fin) | 
| 24 |  | imaexg 7936 | . . . . . . 7
⊢ (𝐴 ∈ Fin → (𝐴 “ {𝑦}) ∈ V) | 
| 25 | 23, 24 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝐴 “ {𝑦}) ∈ V) | 
| 26 |  | gsummpt2d.1 | . . . . . . . . . 10
⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) | 
| 27 | 26 | adantl 481 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝐶 = 𝐷) | 
| 28 |  | simp-4l 782 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝜑) | 
| 29 |  | simplr 768 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝑥 ∈ 𝐴) | 
| 30 | 28, 29, 6 | syl2anc 584 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝐶 ∈ 𝐵) | 
| 31 | 27, 30 | eqeltrrd 2841 | . . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝐷 ∈ 𝐵) | 
| 32 |  | vex 3483 | . . . . . . . . . . . 12
⊢ 𝑦 ∈ V | 
| 33 |  | vex 3483 | . . . . . . . . . . . 12
⊢ 𝑧 ∈ V | 
| 34 | 32, 33 | elimasn 6107 | . . . . . . . . . . 11
⊢ (𝑧 ∈ (𝐴 “ {𝑦}) ↔ 〈𝑦, 𝑧〉 ∈ 𝐴) | 
| 35 | 34 | biimpi 216 | . . . . . . . . . 10
⊢ (𝑧 ∈ (𝐴 “ {𝑦}) → 〈𝑦, 𝑧〉 ∈ 𝐴) | 
| 36 | 35 | adantl 481 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → 〈𝑦, 𝑧〉 ∈ 𝐴) | 
| 37 |  | simpr 484 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝑥 = 〈𝑦, 𝑧〉) | 
| 38 | 37 | eqeq1d 2738 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 = 〈𝑦, 𝑧〉) → (𝑥 = 〈𝑦, 𝑧〉 ↔ 〈𝑦, 𝑧〉 = 〈𝑦, 𝑧〉)) | 
| 39 |  | eqidd 2737 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → 〈𝑦, 𝑧〉 = 〈𝑦, 𝑧〉) | 
| 40 | 36, 38, 39 | rspcedvd 3623 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → ∃𝑥 ∈ 𝐴 𝑥 = 〈𝑦, 𝑧〉) | 
| 41 | 31, 40 | r19.29a 3161 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → 𝐷 ∈ 𝐵) | 
| 42 | 41 | fmpttd 7134 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷):(𝐴 “ {𝑦})⟶𝐵) | 
| 43 |  | eqid 2736 | . . . . . . 7
⊢ (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) = (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) | 
| 44 |  | imafi2 32724 | . . . . . . . . 9
⊢ (𝐴 ∈ Fin → (𝐴 “ {𝑦}) ∈ Fin) | 
| 45 | 4, 44 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (𝐴 “ {𝑦}) ∈ Fin) | 
| 46 | 45 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝐴 “ {𝑦}) ∈ Fin) | 
| 47 |  | fvex 6918 | . . . . . . . 8
⊢
(0g‘𝑊) ∈ V | 
| 48 | 47 | a1i 11 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (0g‘𝑊) ∈ V) | 
| 49 | 43, 46, 41, 48 | fsuppmptdm 9417 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) finSupp (0g‘𝑊)) | 
| 50 |  | 2ndconst 8127 | . . . . . . . 8
⊢ (𝑦 ∈ dom 𝐴 → (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦})) | 
| 51 | 50 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦})) | 
| 52 |  | 1stpreimas 32716 | . . . . . . . . . 10
⊢ ((Rel
𝐴 ∧ 𝑦 ∈ dom 𝐴) → (◡(1st ↾ 𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦}))) | 
| 53 | 7, 52 | sylan 580 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (◡(1st ↾ 𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦}))) | 
| 54 | 53 | reseq2d 5996 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})) = (2nd ↾ ({𝑦} × (𝐴 “ {𝑦})))) | 
| 55 | 54 | f1oeq1d 6842 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → ((2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}) ↔ (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}))) | 
| 56 | 51, 55 | mpbird 257 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦})) | 
| 57 | 1, 2, 22, 25, 42, 49, 56 | gsumf1o 19935 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)) = (𝑊 Σg ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦}))))) | 
| 58 |  | simpr 484 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) | 
| 59 | 53 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → (◡(1st ↾ 𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦}))) | 
| 60 | 58, 59 | eleqtrd 2842 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → 𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦}))) | 
| 61 |  | xp2nd 8048 | . . . . . . . . . 10
⊢ (𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) → (2nd ‘𝑥) ∈ (𝐴 “ {𝑦})) | 
| 62 | 60, 61 | syl 17 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → (2nd ‘𝑥) ∈ (𝐴 “ {𝑦})) | 
| 63 | 62 | ralrimiva 3145 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → ∀𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})(2nd ‘𝑥) ∈ (𝐴 “ {𝑦})) | 
| 64 |  | fo2nd 8036 | . . . . . . . . . . . 12
⊢
2nd :V–onto→V | 
| 65 |  | fofn 6821 | . . . . . . . . . . . 12
⊢
(2nd :V–onto→V → 2nd Fn V) | 
| 66 |  | dffn5 6966 | . . . . . . . . . . . . 13
⊢
(2nd Fn V ↔ 2nd = (𝑥 ∈ V ↦ (2nd
‘𝑥))) | 
| 67 | 66 | biimpi 216 | . . . . . . . . . . . 12
⊢
(2nd Fn V → 2nd = (𝑥 ∈ V ↦ (2nd
‘𝑥))) | 
| 68 | 64, 65, 67 | mp2b 10 | . . . . . . . . . . 11
⊢
2nd = (𝑥
∈ V ↦ (2nd ‘𝑥)) | 
| 69 | 68 | reseq1i 5992 | . . . . . . . . . 10
⊢
(2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})) = ((𝑥 ∈ V ↦ (2nd
‘𝑥)) ↾ (◡(1st ↾ 𝐴) “ {𝑦})) | 
| 70 |  | ssv 4007 | . . . . . . . . . . 11
⊢ (◡(1st ↾ 𝐴) “ {𝑦}) ⊆ V | 
| 71 |  | resmpt 6054 | . . . . . . . . . . 11
⊢ ((◡(1st ↾ 𝐴) “ {𝑦}) ⊆ V → ((𝑥 ∈ V ↦ (2nd
‘𝑥)) ↾ (◡(1st ↾ 𝐴) “ {𝑦})) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ (2nd ‘𝑥))) | 
| 72 | 70, 71 | ax-mp 5 | . . . . . . . . . 10
⊢ ((𝑥 ∈ V ↦
(2nd ‘𝑥))
↾ (◡(1st ↾ 𝐴) “ {𝑦})) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ (2nd ‘𝑥)) | 
| 73 | 69, 72 | eqtri 2764 | . . . . . . . . 9
⊢
(2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ (2nd ‘𝑥)) | 
| 74 | 73 | a1i 11 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ (2nd ‘𝑥))) | 
| 75 |  | eqidd 2737 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) = (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)) | 
| 76 | 63, 74, 75 | fmptcos 7150 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦}))) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ ⦋(2nd
‘𝑥) / 𝑧⦌𝐷)) | 
| 77 |  | nfv 1913 | . . . . . . . . 9
⊢
Ⅎ𝑧((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) | 
| 78 |  | gsummpt2d.c | . . . . . . . . . 10
⊢
Ⅎ𝑧𝐶 | 
| 79 | 78 | a1i 11 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → Ⅎ𝑧𝐶) | 
| 80 | 60 | adantr 480 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → 𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦}))) | 
| 81 |  | xp1st 8047 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) → (1st ‘𝑥) ∈ {𝑦}) | 
| 82 | 80, 81 | syl 17 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → (1st ‘𝑥) ∈ {𝑦}) | 
| 83 |  | fvex 6918 | . . . . . . . . . . . . . 14
⊢
(1st ‘𝑥) ∈ V | 
| 84 | 83 | elsn 4640 | . . . . . . . . . . . . 13
⊢
((1st ‘𝑥) ∈ {𝑦} ↔ (1st ‘𝑥) = 𝑦) | 
| 85 | 82, 84 | sylib 218 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → (1st ‘𝑥) = 𝑦) | 
| 86 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → 𝑧 = (2nd ‘𝑥)) | 
| 87 | 86 | eqcomd 2742 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → (2nd ‘𝑥) = 𝑧) | 
| 88 |  | eqopi 8051 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) ∧ ((1st ‘𝑥) = 𝑦 ∧ (2nd ‘𝑥) = 𝑧)) → 𝑥 = 〈𝑦, 𝑧〉) | 
| 89 | 80, 85, 87, 88 | syl12anc 836 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → 𝑥 = 〈𝑦, 𝑧〉) | 
| 90 | 89, 26 | syl 17 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → 𝐶 = 𝐷) | 
| 91 | 90 | eqcomd 2742 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → 𝐷 = 𝐶) | 
| 92 | 77, 79, 62, 91 | csbiedf 3928 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → ⦋(2nd
‘𝑥) / 𝑧⦌𝐷 = 𝐶) | 
| 93 | 92 | mpteq2dva 5241 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ ⦋(2nd
‘𝑥) / 𝑧⦌𝐷) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶)) | 
| 94 | 76, 93 | eqtrd 2776 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦}))) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶)) | 
| 95 | 94 | oveq2d 7448 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑊 Σg ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})))) = (𝑊 Σg (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶))) | 
| 96 | 57, 95 | eqtr2d 2777 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑊 Σg (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶)) = (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))) | 
| 97 | 21, 96 | mpteq2da 5239 | . . 3
⊢ (𝜑 → (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶))) = (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))) | 
| 98 | 97 | oveq2d 7448 | . 2
⊢ (𝜑 → (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶)))) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))))) | 
| 99 | 20, 98 | eqtrd 2776 | 1
⊢ (𝜑 → (𝑊 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))))) |