Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummpt2d Structured version   Visualization version   GIF version

Theorem gsummpt2d 32980
Description: Express a finite sum over a two-dimensional range as a double sum. See also gsum2d 19940. (Contributed by Thierry Arnoux, 27-Apr-2020.)
Hypotheses
Ref Expression
gsummpt2d.c 𝑧𝐶
gsummpt2d.0 𝑦𝜑
gsummpt2d.b 𝐵 = (Base‘𝑊)
gsummpt2d.1 (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)
gsummpt2d.r (𝜑 → Rel 𝐴)
gsummpt2d.2 (𝜑𝐴 ∈ Fin)
gsummpt2d.m (𝜑𝑊 ∈ CMnd)
gsummpt2d.3 ((𝜑𝑥𝐴) → 𝐶𝐵)
Assertion
Ref Expression
gsummpt2d (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑦,𝐶   𝑥,𝐷   𝑥,𝑊,𝑦   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑥,𝑧)   𝐷(𝑦,𝑧)   𝑊(𝑧)

Proof of Theorem gsummpt2d
StepHypRef Expression
1 gsummpt2d.b . . 3 𝐵 = (Base‘𝑊)
2 eqid 2734 . . 3 (0g𝑊) = (0g𝑊)
3 gsummpt2d.m . . 3 (𝜑𝑊 ∈ CMnd)
4 gsummpt2d.2 . . 3 (𝜑𝐴 ∈ Fin)
54dmexd 7894 . . 3 (𝜑 → dom 𝐴 ∈ V)
6 gsummpt2d.3 . . 3 ((𝜑𝑥𝐴) → 𝐶𝐵)
7 gsummpt2d.r . . . 4 (𝜑 → Rel 𝐴)
8 1stdm 8034 . . . 4 ((Rel 𝐴𝑥𝐴) → (1st𝑥) ∈ dom 𝐴)
97, 8sylan 580 . . 3 ((𝜑𝑥𝐴) → (1st𝑥) ∈ dom 𝐴)
10 fo1st 8003 . . . . . 6 1st :V–onto→V
11 fofn 6789 . . . . . 6 (1st :V–onto→V → 1st Fn V)
12 dffn5 6934 . . . . . . 7 (1st Fn V ↔ 1st = (𝑥 ∈ V ↦ (1st𝑥)))
1312biimpi 216 . . . . . 6 (1st Fn V → 1st = (𝑥 ∈ V ↦ (1st𝑥)))
1410, 11, 13mp2b 10 . . . . 5 1st = (𝑥 ∈ V ↦ (1st𝑥))
1514reseq1i 5960 . . . 4 (1st𝐴) = ((𝑥 ∈ V ↦ (1st𝑥)) ↾ 𝐴)
16 ssv 3981 . . . . 5 𝐴 ⊆ V
17 resmpt 6022 . . . . 5 (𝐴 ⊆ V → ((𝑥 ∈ V ↦ (1st𝑥)) ↾ 𝐴) = (𝑥𝐴 ↦ (1st𝑥)))
1816, 17ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ (1st𝑥)) ↾ 𝐴) = (𝑥𝐴 ↦ (1st𝑥))
1915, 18eqtri 2757 . . 3 (1st𝐴) = (𝑥𝐴 ↦ (1st𝑥))
201, 2, 3, 4, 5, 6, 9, 19gsummpt2co 32979 . 2 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶)))))
21 gsummpt2d.0 . . . 4 𝑦𝜑
223adantr 480 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → 𝑊 ∈ CMnd)
234adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → 𝐴 ∈ Fin)
24 imaexg 7904 . . . . . . 7 (𝐴 ∈ Fin → (𝐴 “ {𝑦}) ∈ V)
2523, 24syl 17 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → (𝐴 “ {𝑦}) ∈ V)
26 gsummpt2d.1 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)
2726adantl 481 . . . . . . . . 9 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝐶 = 𝐷)
28 simp-4l 782 . . . . . . . . . 10 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝜑)
29 simplr 768 . . . . . . . . . 10 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝑥𝐴)
3028, 29, 6syl2anc 584 . . . . . . . . 9 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝐶𝐵)
3127, 30eqeltrrd 2834 . . . . . . . 8 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝐷𝐵)
32 vex 3461 . . . . . . . . . . . 12 𝑦 ∈ V
33 vex 3461 . . . . . . . . . . . 12 𝑧 ∈ V
3432, 33elimasn 6075 . . . . . . . . . . 11 (𝑧 ∈ (𝐴 “ {𝑦}) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴)
3534biimpi 216 . . . . . . . . . 10 (𝑧 ∈ (𝐴 “ {𝑦}) → ⟨𝑦, 𝑧⟩ ∈ 𝐴)
3635adantl 481 . . . . . . . . 9 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → ⟨𝑦, 𝑧⟩ ∈ 𝐴)
37 simpr 484 . . . . . . . . . 10 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝑥 = ⟨𝑦, 𝑧⟩)
3837eqeq1d 2736 . . . . . . . . 9 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → (𝑥 = ⟨𝑦, 𝑧⟩ ↔ ⟨𝑦, 𝑧⟩ = ⟨𝑦, 𝑧⟩))
39 eqidd 2735 . . . . . . . . 9 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → ⟨𝑦, 𝑧⟩ = ⟨𝑦, 𝑧⟩)
4036, 38, 39rspcedvd 3601 . . . . . . . 8 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → ∃𝑥𝐴 𝑥 = ⟨𝑦, 𝑧⟩)
4131, 40r19.29a 3146 . . . . . . 7 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → 𝐷𝐵)
4241fmpttd 7102 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷):(𝐴 “ {𝑦})⟶𝐵)
43 eqid 2734 . . . . . . 7 (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) = (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)
44 imafi2 32625 . . . . . . . . 9 (𝐴 ∈ Fin → (𝐴 “ {𝑦}) ∈ Fin)
454, 44syl 17 . . . . . . . 8 (𝜑 → (𝐴 “ {𝑦}) ∈ Fin)
4645adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → (𝐴 “ {𝑦}) ∈ Fin)
47 fvex 6886 . . . . . . . 8 (0g𝑊) ∈ V
4847a1i 11 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → (0g𝑊) ∈ V)
4943, 46, 41, 48fsuppmptdm 9383 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) finSupp (0g𝑊))
50 2ndconst 8095 . . . . . . . 8 (𝑦 ∈ dom 𝐴 → (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}))
5150adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}))
52 1stpreimas 32617 . . . . . . . . . 10 ((Rel 𝐴𝑦 ∈ dom 𝐴) → ((1st𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦})))
537, 52sylan 580 . . . . . . . . 9 ((𝜑𝑦 ∈ dom 𝐴) → ((1st𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦})))
5453reseq2d 5964 . . . . . . . 8 ((𝜑𝑦 ∈ dom 𝐴) → (2nd ↾ ((1st𝐴) “ {𝑦})) = (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))))
5554f1oeq1d 6810 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → ((2nd ↾ ((1st𝐴) “ {𝑦})):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}) ↔ (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦})))
5651, 55mpbird 257 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → (2nd ↾ ((1st𝐴) “ {𝑦})):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}))
571, 2, 22, 25, 42, 49, 56gsumf1o 19884 . . . . 5 ((𝜑𝑦 ∈ dom 𝐴) → (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)) = (𝑊 Σg ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ ((1st𝐴) “ {𝑦})))))
58 simpr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → 𝑥 ∈ ((1st𝐴) “ {𝑦}))
5953adantr 480 . . . . . . . . . . 11 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → ((1st𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦})))
6058, 59eleqtrd 2835 . . . . . . . . . 10 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → 𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})))
61 xp2nd 8016 . . . . . . . . . 10 (𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) → (2nd𝑥) ∈ (𝐴 “ {𝑦}))
6260, 61syl 17 . . . . . . . . 9 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → (2nd𝑥) ∈ (𝐴 “ {𝑦}))
6362ralrimiva 3130 . . . . . . . 8 ((𝜑𝑦 ∈ dom 𝐴) → ∀𝑥 ∈ ((1st𝐴) “ {𝑦})(2nd𝑥) ∈ (𝐴 “ {𝑦}))
64 fo2nd 8004 . . . . . . . . . . . 12 2nd :V–onto→V
65 fofn 6789 . . . . . . . . . . . 12 (2nd :V–onto→V → 2nd Fn V)
66 dffn5 6934 . . . . . . . . . . . . 13 (2nd Fn V ↔ 2nd = (𝑥 ∈ V ↦ (2nd𝑥)))
6766biimpi 216 . . . . . . . . . . . 12 (2nd Fn V → 2nd = (𝑥 ∈ V ↦ (2nd𝑥)))
6864, 65, 67mp2b 10 . . . . . . . . . . 11 2nd = (𝑥 ∈ V ↦ (2nd𝑥))
6968reseq1i 5960 . . . . . . . . . 10 (2nd ↾ ((1st𝐴) “ {𝑦})) = ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ((1st𝐴) “ {𝑦}))
70 ssv 3981 . . . . . . . . . . 11 ((1st𝐴) “ {𝑦}) ⊆ V
71 resmpt 6022 . . . . . . . . . . 11 (((1st𝐴) “ {𝑦}) ⊆ V → ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ((1st𝐴) “ {𝑦})) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥)))
7270, 71ax-mp 5 . . . . . . . . . 10 ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ((1st𝐴) “ {𝑦})) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥))
7369, 72eqtri 2757 . . . . . . . . 9 (2nd ↾ ((1st𝐴) “ {𝑦})) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥))
7473a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ dom 𝐴) → (2nd ↾ ((1st𝐴) “ {𝑦})) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥)))
75 eqidd 2735 . . . . . . . 8 ((𝜑𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) = (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))
7663, 74, 75fmptcos 7118 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ ((1st𝐴) “ {𝑦}))) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥) / 𝑧𝐷))
77 nfv 1913 . . . . . . . . 9 𝑧((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦}))
78 gsummpt2d.c . . . . . . . . . 10 𝑧𝐶
7978a1i 11 . . . . . . . . 9 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → 𝑧𝐶)
8060adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})))
81 xp1st 8015 . . . . . . . . . . . . . 14 (𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) → (1st𝑥) ∈ {𝑦})
8280, 81syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → (1st𝑥) ∈ {𝑦})
83 fvex 6886 . . . . . . . . . . . . . 14 (1st𝑥) ∈ V
8483elsn 4614 . . . . . . . . . . . . 13 ((1st𝑥) ∈ {𝑦} ↔ (1st𝑥) = 𝑦)
8582, 84sylib 218 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → (1st𝑥) = 𝑦)
86 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝑧 = (2nd𝑥))
8786eqcomd 2740 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → (2nd𝑥) = 𝑧)
88 eqopi 8019 . . . . . . . . . . . 12 ((𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) ∧ ((1st𝑥) = 𝑦 ∧ (2nd𝑥) = 𝑧)) → 𝑥 = ⟨𝑦, 𝑧⟩)
8980, 85, 87, 88syl12anc 836 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝑥 = ⟨𝑦, 𝑧⟩)
9089, 26syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝐶 = 𝐷)
9190eqcomd 2740 . . . . . . . . 9 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝐷 = 𝐶)
9277, 79, 62, 91csbiedf 3902 . . . . . . . 8 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → (2nd𝑥) / 𝑧𝐷 = 𝐶)
9392mpteq2dva 5212 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥) / 𝑧𝐷) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶))
9476, 93eqtrd 2769 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ ((1st𝐴) “ {𝑦}))) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶))
9594oveq2d 7416 . . . . 5 ((𝜑𝑦 ∈ dom 𝐴) → (𝑊 Σg ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ ((1st𝐴) “ {𝑦})))) = (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶)))
9657, 95eqtr2d 2770 . . . 4 ((𝜑𝑦 ∈ dom 𝐴) → (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶)) = (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))
9721, 96mpteq2da 5211 . . 3 (𝜑 → (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶))) = (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))))
9897oveq2d 7416 . 2 (𝜑 → (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶)))) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))))
9920, 98eqtrd 2769 1 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1782  wcel 2107  wnfc 2882  Vcvv 3457  csb 3872  wss 3924  {csn 4599  cop 4605  cmpt 5199   × cxp 5650  ccnv 5651  dom cdm 5652  cres 5654  cima 5655  ccom 5656  Rel wrel 5657   Fn wfn 6523  ontowfo 6526  1-1-ontowf1o 6527  cfv 6528  (class class class)co 7400  1st c1st 7981  2nd c2nd 7982  Fincfn 8954  Basecbs 17215  0gc0g 17440   Σg cgsu 17441  CMndccmn 19748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-iin 4968  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-of 7666  df-om 7857  df-1st 7983  df-2nd 7984  df-supp 8155  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-fsupp 9369  df-oi 9517  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-n0 12495  df-z 12582  df-uz 12846  df-fz 13515  df-fzo 13662  df-seq 14010  df-hash 14339  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-plusg 17271  df-0g 17442  df-gsum 17443  df-mre 17585  df-mrc 17586  df-acs 17588  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-submnd 18749  df-mulg 19038  df-cntz 19287  df-cmn 19750
This theorem is referenced by:  gsumfs2d  32986  gsumhashmul  32992  esum2d  34053
  Copyright terms: Public domain W3C validator