Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummpt2d Structured version   Visualization version   GIF version

Theorem gsummpt2d 33048
Description: Express a finite sum over a two-dimensional range as a double sum. See also gsum2d 19958. (Contributed by Thierry Arnoux, 27-Apr-2020.)
Hypotheses
Ref Expression
gsummpt2d.c 𝑧𝐶
gsummpt2d.0 𝑦𝜑
gsummpt2d.b 𝐵 = (Base‘𝑊)
gsummpt2d.1 (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)
gsummpt2d.r (𝜑 → Rel 𝐴)
gsummpt2d.2 (𝜑𝐴 ∈ Fin)
gsummpt2d.m (𝜑𝑊 ∈ CMnd)
gsummpt2d.3 ((𝜑𝑥𝐴) → 𝐶𝐵)
Assertion
Ref Expression
gsummpt2d (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑦,𝐶   𝑥,𝐷   𝑥,𝑊,𝑦   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑥,𝑧)   𝐷(𝑦,𝑧)   𝑊(𝑧)

Proof of Theorem gsummpt2d
StepHypRef Expression
1 gsummpt2d.b . . 3 𝐵 = (Base‘𝑊)
2 eqid 2736 . . 3 (0g𝑊) = (0g𝑊)
3 gsummpt2d.m . . 3 (𝜑𝑊 ∈ CMnd)
4 gsummpt2d.2 . . 3 (𝜑𝐴 ∈ Fin)
54dmexd 7904 . . 3 (𝜑 → dom 𝐴 ∈ V)
6 gsummpt2d.3 . . 3 ((𝜑𝑥𝐴) → 𝐶𝐵)
7 gsummpt2d.r . . . 4 (𝜑 → Rel 𝐴)
8 1stdm 8044 . . . 4 ((Rel 𝐴𝑥𝐴) → (1st𝑥) ∈ dom 𝐴)
97, 8sylan 580 . . 3 ((𝜑𝑥𝐴) → (1st𝑥) ∈ dom 𝐴)
10 fo1st 8013 . . . . . 6 1st :V–onto→V
11 fofn 6797 . . . . . 6 (1st :V–onto→V → 1st Fn V)
12 dffn5 6942 . . . . . . 7 (1st Fn V ↔ 1st = (𝑥 ∈ V ↦ (1st𝑥)))
1312biimpi 216 . . . . . 6 (1st Fn V → 1st = (𝑥 ∈ V ↦ (1st𝑥)))
1410, 11, 13mp2b 10 . . . . 5 1st = (𝑥 ∈ V ↦ (1st𝑥))
1514reseq1i 5967 . . . 4 (1st𝐴) = ((𝑥 ∈ V ↦ (1st𝑥)) ↾ 𝐴)
16 ssv 3988 . . . . 5 𝐴 ⊆ V
17 resmpt 6029 . . . . 5 (𝐴 ⊆ V → ((𝑥 ∈ V ↦ (1st𝑥)) ↾ 𝐴) = (𝑥𝐴 ↦ (1st𝑥)))
1816, 17ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ (1st𝑥)) ↾ 𝐴) = (𝑥𝐴 ↦ (1st𝑥))
1915, 18eqtri 2759 . . 3 (1st𝐴) = (𝑥𝐴 ↦ (1st𝑥))
201, 2, 3, 4, 5, 6, 9, 19gsummpt2co 33047 . 2 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶)))))
21 gsummpt2d.0 . . . 4 𝑦𝜑
223adantr 480 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → 𝑊 ∈ CMnd)
234adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → 𝐴 ∈ Fin)
24 imaexg 7914 . . . . . . 7 (𝐴 ∈ Fin → (𝐴 “ {𝑦}) ∈ V)
2523, 24syl 17 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → (𝐴 “ {𝑦}) ∈ V)
26 gsummpt2d.1 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)
2726adantl 481 . . . . . . . . 9 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝐶 = 𝐷)
28 simp-4l 782 . . . . . . . . . 10 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝜑)
29 simplr 768 . . . . . . . . . 10 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝑥𝐴)
3028, 29, 6syl2anc 584 . . . . . . . . 9 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝐶𝐵)
3127, 30eqeltrrd 2836 . . . . . . . 8 (((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥𝐴) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝐷𝐵)
32 vex 3468 . . . . . . . . . . . 12 𝑦 ∈ V
33 vex 3468 . . . . . . . . . . . 12 𝑧 ∈ V
3432, 33elimasn 6082 . . . . . . . . . . 11 (𝑧 ∈ (𝐴 “ {𝑦}) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴)
3534biimpi 216 . . . . . . . . . 10 (𝑧 ∈ (𝐴 “ {𝑦}) → ⟨𝑦, 𝑧⟩ ∈ 𝐴)
3635adantl 481 . . . . . . . . 9 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → ⟨𝑦, 𝑧⟩ ∈ 𝐴)
37 simpr 484 . . . . . . . . . 10 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → 𝑥 = ⟨𝑦, 𝑧⟩)
3837eqeq1d 2738 . . . . . . . . 9 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) → (𝑥 = ⟨𝑦, 𝑧⟩ ↔ ⟨𝑦, 𝑧⟩ = ⟨𝑦, 𝑧⟩))
39 eqidd 2737 . . . . . . . . 9 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → ⟨𝑦, 𝑧⟩ = ⟨𝑦, 𝑧⟩)
4036, 38, 39rspcedvd 3608 . . . . . . . 8 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → ∃𝑥𝐴 𝑥 = ⟨𝑦, 𝑧⟩)
4131, 40r19.29a 3149 . . . . . . 7 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → 𝐷𝐵)
4241fmpttd 7110 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷):(𝐴 “ {𝑦})⟶𝐵)
43 eqid 2736 . . . . . . 7 (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) = (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)
44 imafi2 32694 . . . . . . . . 9 (𝐴 ∈ Fin → (𝐴 “ {𝑦}) ∈ Fin)
454, 44syl 17 . . . . . . . 8 (𝜑 → (𝐴 “ {𝑦}) ∈ Fin)
4645adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → (𝐴 “ {𝑦}) ∈ Fin)
47 fvex 6894 . . . . . . . 8 (0g𝑊) ∈ V
4847a1i 11 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → (0g𝑊) ∈ V)
4943, 46, 41, 48fsuppmptdm 9393 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) finSupp (0g𝑊))
50 2ndconst 8105 . . . . . . . 8 (𝑦 ∈ dom 𝐴 → (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}))
5150adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}))
52 1stpreimas 32688 . . . . . . . . . 10 ((Rel 𝐴𝑦 ∈ dom 𝐴) → ((1st𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦})))
537, 52sylan 580 . . . . . . . . 9 ((𝜑𝑦 ∈ dom 𝐴) → ((1st𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦})))
5453reseq2d 5971 . . . . . . . 8 ((𝜑𝑦 ∈ dom 𝐴) → (2nd ↾ ((1st𝐴) “ {𝑦})) = (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))))
5554f1oeq1d 6818 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → ((2nd ↾ ((1st𝐴) “ {𝑦})):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}) ↔ (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦})))
5651, 55mpbird 257 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → (2nd ↾ ((1st𝐴) “ {𝑦})):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}))
571, 2, 22, 25, 42, 49, 56gsumf1o 19902 . . . . 5 ((𝜑𝑦 ∈ dom 𝐴) → (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)) = (𝑊 Σg ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ ((1st𝐴) “ {𝑦})))))
58 simpr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → 𝑥 ∈ ((1st𝐴) “ {𝑦}))
5953adantr 480 . . . . . . . . . . 11 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → ((1st𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦})))
6058, 59eleqtrd 2837 . . . . . . . . . 10 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → 𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})))
61 xp2nd 8026 . . . . . . . . . 10 (𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) → (2nd𝑥) ∈ (𝐴 “ {𝑦}))
6260, 61syl 17 . . . . . . . . 9 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → (2nd𝑥) ∈ (𝐴 “ {𝑦}))
6362ralrimiva 3133 . . . . . . . 8 ((𝜑𝑦 ∈ dom 𝐴) → ∀𝑥 ∈ ((1st𝐴) “ {𝑦})(2nd𝑥) ∈ (𝐴 “ {𝑦}))
64 fo2nd 8014 . . . . . . . . . . . 12 2nd :V–onto→V
65 fofn 6797 . . . . . . . . . . . 12 (2nd :V–onto→V → 2nd Fn V)
66 dffn5 6942 . . . . . . . . . . . . 13 (2nd Fn V ↔ 2nd = (𝑥 ∈ V ↦ (2nd𝑥)))
6766biimpi 216 . . . . . . . . . . . 12 (2nd Fn V → 2nd = (𝑥 ∈ V ↦ (2nd𝑥)))
6864, 65, 67mp2b 10 . . . . . . . . . . 11 2nd = (𝑥 ∈ V ↦ (2nd𝑥))
6968reseq1i 5967 . . . . . . . . . 10 (2nd ↾ ((1st𝐴) “ {𝑦})) = ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ((1st𝐴) “ {𝑦}))
70 ssv 3988 . . . . . . . . . . 11 ((1st𝐴) “ {𝑦}) ⊆ V
71 resmpt 6029 . . . . . . . . . . 11 (((1st𝐴) “ {𝑦}) ⊆ V → ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ((1st𝐴) “ {𝑦})) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥)))
7270, 71ax-mp 5 . . . . . . . . . 10 ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ((1st𝐴) “ {𝑦})) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥))
7369, 72eqtri 2759 . . . . . . . . 9 (2nd ↾ ((1st𝐴) “ {𝑦})) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥))
7473a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ dom 𝐴) → (2nd ↾ ((1st𝐴) “ {𝑦})) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥)))
75 eqidd 2737 . . . . . . . 8 ((𝜑𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) = (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))
7663, 74, 75fmptcos 7126 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ ((1st𝐴) “ {𝑦}))) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥) / 𝑧𝐷))
77 nfv 1914 . . . . . . . . 9 𝑧((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦}))
78 gsummpt2d.c . . . . . . . . . 10 𝑧𝐶
7978a1i 11 . . . . . . . . 9 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → 𝑧𝐶)
8060adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})))
81 xp1st 8025 . . . . . . . . . . . . . 14 (𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) → (1st𝑥) ∈ {𝑦})
8280, 81syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → (1st𝑥) ∈ {𝑦})
83 fvex 6894 . . . . . . . . . . . . . 14 (1st𝑥) ∈ V
8483elsn 4621 . . . . . . . . . . . . 13 ((1st𝑥) ∈ {𝑦} ↔ (1st𝑥) = 𝑦)
8582, 84sylib 218 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → (1st𝑥) = 𝑦)
86 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝑧 = (2nd𝑥))
8786eqcomd 2742 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → (2nd𝑥) = 𝑧)
88 eqopi 8029 . . . . . . . . . . . 12 ((𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) ∧ ((1st𝑥) = 𝑦 ∧ (2nd𝑥) = 𝑧)) → 𝑥 = ⟨𝑦, 𝑧⟩)
8980, 85, 87, 88syl12anc 836 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝑥 = ⟨𝑦, 𝑧⟩)
9089, 26syl 17 . . . . . . . . . 10 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝐶 = 𝐷)
9190eqcomd 2742 . . . . . . . . 9 ((((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) ∧ 𝑧 = (2nd𝑥)) → 𝐷 = 𝐶)
9277, 79, 62, 91csbiedf 3909 . . . . . . . 8 (((𝜑𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ ((1st𝐴) “ {𝑦})) → (2nd𝑥) / 𝑧𝐷 = 𝐶)
9392mpteq2dva 5219 . . . . . . 7 ((𝜑𝑦 ∈ dom 𝐴) → (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ (2nd𝑥) / 𝑧𝐷) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶))
9476, 93eqtrd 2771 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐴) → ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ ((1st𝐴) “ {𝑦}))) = (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶))
9594oveq2d 7426 . . . . 5 ((𝜑𝑦 ∈ dom 𝐴) → (𝑊 Σg ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ ((1st𝐴) “ {𝑦})))) = (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶)))
9657, 95eqtr2d 2772 . . . 4 ((𝜑𝑦 ∈ dom 𝐴) → (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶)) = (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))
9721, 96mpteq2da 5218 . . 3 (𝜑 → (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶))) = (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))))
9897oveq2d 7426 . 2 (𝜑 → (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ ((1st𝐴) “ {𝑦}) ↦ 𝐶)))) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))))
9920, 98eqtrd 2771 1 (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2884  Vcvv 3464  csb 3879  wss 3931  {csn 4606  cop 4612  cmpt 5206   × cxp 5657  ccnv 5658  dom cdm 5659  cres 5661  cima 5662  ccom 5663  Rel wrel 5664   Fn wfn 6531  ontowfo 6534  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  Fincfn 8964  Basecbs 17233  0gc0g 17458   Σg cgsu 17459  CMndccmn 19766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768
This theorem is referenced by:  gsumfs2d  33054  gsumhashmul  33060  esum2d  34129
  Copyright terms: Public domain W3C validator