Proof of Theorem gsummpt2d
Step | Hyp | Ref
| Expression |
1 | | gsummpt2d.b |
. . 3
⊢ 𝐵 = (Base‘𝑊) |
2 | | eqid 2739 |
. . 3
⊢
(0g‘𝑊) = (0g‘𝑊) |
3 | | gsummpt2d.m |
. . 3
⊢ (𝜑 → 𝑊 ∈ CMnd) |
4 | | gsummpt2d.2 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
5 | 4 | dmexd 7739 |
. . 3
⊢ (𝜑 → dom 𝐴 ∈ V) |
6 | | gsummpt2d.3 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
7 | | gsummpt2d.r |
. . . 4
⊢ (𝜑 → Rel 𝐴) |
8 | | 1stdm 7867 |
. . . 4
⊢ ((Rel
𝐴 ∧ 𝑥 ∈ 𝐴) → (1st ‘𝑥) ∈ dom 𝐴) |
9 | 7, 8 | sylan 579 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1st ‘𝑥) ∈ dom 𝐴) |
10 | | fo1st 7837 |
. . . . . 6
⊢
1st :V–onto→V |
11 | | fofn 6686 |
. . . . . 6
⊢
(1st :V–onto→V → 1st Fn V) |
12 | | dffn5 6822 |
. . . . . . 7
⊢
(1st Fn V ↔ 1st = (𝑥 ∈ V ↦ (1st
‘𝑥))) |
13 | 12 | biimpi 215 |
. . . . . 6
⊢
(1st Fn V → 1st = (𝑥 ∈ V ↦ (1st
‘𝑥))) |
14 | 10, 11, 13 | mp2b 10 |
. . . . 5
⊢
1st = (𝑥
∈ V ↦ (1st ‘𝑥)) |
15 | 14 | reseq1i 5884 |
. . . 4
⊢
(1st ↾ 𝐴) = ((𝑥 ∈ V ↦ (1st
‘𝑥)) ↾ 𝐴) |
16 | | ssv 3949 |
. . . . 5
⊢ 𝐴 ⊆ V |
17 | | resmpt 5942 |
. . . . 5
⊢ (𝐴 ⊆ V → ((𝑥 ∈ V ↦
(1st ‘𝑥))
↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) |
18 | 16, 17 | ax-mp 5 |
. . . 4
⊢ ((𝑥 ∈ V ↦
(1st ‘𝑥))
↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) |
19 | 15, 18 | eqtri 2767 |
. . 3
⊢
(1st ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) |
20 | 1, 2, 3, 4, 5, 6, 9, 19 | gsummpt2co 31287 |
. 2
⊢ (𝜑 → (𝑊 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶))))) |
21 | | gsummpt2d.0 |
. . . 4
⊢
Ⅎ𝑦𝜑 |
22 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → 𝑊 ∈ CMnd) |
23 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → 𝐴 ∈ Fin) |
24 | | imaexg 7749 |
. . . . . . 7
⊢ (𝐴 ∈ Fin → (𝐴 “ {𝑦}) ∈ V) |
25 | 23, 24 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝐴 “ {𝑦}) ∈ V) |
26 | | gsummpt2d.1 |
. . . . . . . . . 10
⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) |
27 | 26 | adantl 481 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝐶 = 𝐷) |
28 | | simp-4l 779 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝜑) |
29 | | simplr 765 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝑥 ∈ 𝐴) |
30 | 28, 29, 6 | syl2anc 583 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝐶 ∈ 𝐵) |
31 | 27, 30 | eqeltrrd 2841 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝐷 ∈ 𝐵) |
32 | | vex 3434 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
33 | | vex 3434 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ V |
34 | 32, 33 | elimasn 5994 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝐴 “ {𝑦}) ↔ 〈𝑦, 𝑧〉 ∈ 𝐴) |
35 | 34 | biimpi 215 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝐴 “ {𝑦}) → 〈𝑦, 𝑧〉 ∈ 𝐴) |
36 | 35 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → 〈𝑦, 𝑧〉 ∈ 𝐴) |
37 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 = 〈𝑦, 𝑧〉) → 𝑥 = 〈𝑦, 𝑧〉) |
38 | 37 | eqeq1d 2741 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) ∧ 𝑥 = 〈𝑦, 𝑧〉) → (𝑥 = 〈𝑦, 𝑧〉 ↔ 〈𝑦, 𝑧〉 = 〈𝑦, 𝑧〉)) |
39 | | eqidd 2740 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → 〈𝑦, 𝑧〉 = 〈𝑦, 𝑧〉) |
40 | 36, 38, 39 | rspcedvd 3563 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → ∃𝑥 ∈ 𝐴 𝑥 = 〈𝑦, 𝑧〉) |
41 | 31, 40 | r19.29a 3219 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑧 ∈ (𝐴 “ {𝑦})) → 𝐷 ∈ 𝐵) |
42 | 41 | fmpttd 6983 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷):(𝐴 “ {𝑦})⟶𝐵) |
43 | | eqid 2739 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) = (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) |
44 | | imafi2 31025 |
. . . . . . . . 9
⊢ (𝐴 ∈ Fin → (𝐴 “ {𝑦}) ∈ Fin) |
45 | 4, 44 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 “ {𝑦}) ∈ Fin) |
46 | 45 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝐴 “ {𝑦}) ∈ Fin) |
47 | | fvex 6781 |
. . . . . . . 8
⊢
(0g‘𝑊) ∈ V |
48 | 47 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (0g‘𝑊) ∈ V) |
49 | 43, 46, 41, 48 | fsuppmptdm 9100 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) finSupp (0g‘𝑊)) |
50 | | 2ndconst 7925 |
. . . . . . . 8
⊢ (𝑦 ∈ dom 𝐴 → (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦})) |
51 | 50 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦})) |
52 | | 1stpreimas 31017 |
. . . . . . . . . 10
⊢ ((Rel
𝐴 ∧ 𝑦 ∈ dom 𝐴) → (◡(1st ↾ 𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦}))) |
53 | 7, 52 | sylan 579 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (◡(1st ↾ 𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦}))) |
54 | 53 | reseq2d 5888 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})) = (2nd ↾ ({𝑦} × (𝐴 “ {𝑦})))) |
55 | 54 | f1oeq1d 6707 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → ((2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}) ↔ (2nd ↾ ({𝑦} × (𝐴 “ {𝑦}))):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦}))) |
56 | 51, 55 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})):({𝑦} × (𝐴 “ {𝑦}))–1-1-onto→(𝐴 “ {𝑦})) |
57 | 1, 2, 22, 25, 42, 49, 56 | gsumf1o 19498 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)) = (𝑊 Σg ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦}))))) |
58 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) |
59 | 53 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → (◡(1st ↾ 𝐴) “ {𝑦}) = ({𝑦} × (𝐴 “ {𝑦}))) |
60 | 58, 59 | eleqtrd 2842 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → 𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦}))) |
61 | | xp2nd 7850 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) → (2nd ‘𝑥) ∈ (𝐴 “ {𝑦})) |
62 | 60, 61 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → (2nd ‘𝑥) ∈ (𝐴 “ {𝑦})) |
63 | 62 | ralrimiva 3109 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → ∀𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})(2nd ‘𝑥) ∈ (𝐴 “ {𝑦})) |
64 | | fo2nd 7838 |
. . . . . . . . . . . 12
⊢
2nd :V–onto→V |
65 | | fofn 6686 |
. . . . . . . . . . . 12
⊢
(2nd :V–onto→V → 2nd Fn V) |
66 | | dffn5 6822 |
. . . . . . . . . . . . 13
⊢
(2nd Fn V ↔ 2nd = (𝑥 ∈ V ↦ (2nd
‘𝑥))) |
67 | 66 | biimpi 215 |
. . . . . . . . . . . 12
⊢
(2nd Fn V → 2nd = (𝑥 ∈ V ↦ (2nd
‘𝑥))) |
68 | 64, 65, 67 | mp2b 10 |
. . . . . . . . . . 11
⊢
2nd = (𝑥
∈ V ↦ (2nd ‘𝑥)) |
69 | 68 | reseq1i 5884 |
. . . . . . . . . 10
⊢
(2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})) = ((𝑥 ∈ V ↦ (2nd
‘𝑥)) ↾ (◡(1st ↾ 𝐴) “ {𝑦})) |
70 | | ssv 3949 |
. . . . . . . . . . 11
⊢ (◡(1st ↾ 𝐴) “ {𝑦}) ⊆ V |
71 | | resmpt 5942 |
. . . . . . . . . . 11
⊢ ((◡(1st ↾ 𝐴) “ {𝑦}) ⊆ V → ((𝑥 ∈ V ↦ (2nd
‘𝑥)) ↾ (◡(1st ↾ 𝐴) “ {𝑦})) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ (2nd ‘𝑥))) |
72 | 70, 71 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ V ↦
(2nd ‘𝑥))
↾ (◡(1st ↾ 𝐴) “ {𝑦})) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ (2nd ‘𝑥)) |
73 | 69, 72 | eqtri 2767 |
. . . . . . . . 9
⊢
(2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ (2nd ‘𝑥)) |
74 | 73 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ (2nd ‘𝑥))) |
75 | | eqidd 2740 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) = (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)) |
76 | 63, 74, 75 | fmptcos 6997 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦}))) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ ⦋(2nd
‘𝑥) / 𝑧⦌𝐷)) |
77 | | nfv 1920 |
. . . . . . . . 9
⊢
Ⅎ𝑧((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) |
78 | | gsummpt2d.c |
. . . . . . . . . 10
⊢
Ⅎ𝑧𝐶 |
79 | 78 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → Ⅎ𝑧𝐶) |
80 | 60 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → 𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦}))) |
81 | | xp1st 7849 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) → (1st ‘𝑥) ∈ {𝑦}) |
82 | 80, 81 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → (1st ‘𝑥) ∈ {𝑦}) |
83 | | fvex 6781 |
. . . . . . . . . . . . . 14
⊢
(1st ‘𝑥) ∈ V |
84 | 83 | elsn 4581 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝑥) ∈ {𝑦} ↔ (1st ‘𝑥) = 𝑦) |
85 | 82, 84 | sylib 217 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → (1st ‘𝑥) = 𝑦) |
86 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → 𝑧 = (2nd ‘𝑥)) |
87 | 86 | eqcomd 2745 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → (2nd ‘𝑥) = 𝑧) |
88 | | eqopi 7853 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ({𝑦} × (𝐴 “ {𝑦})) ∧ ((1st ‘𝑥) = 𝑦 ∧ (2nd ‘𝑥) = 𝑧)) → 𝑥 = 〈𝑦, 𝑧〉) |
89 | 80, 85, 87, 88 | syl12anc 833 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → 𝑥 = 〈𝑦, 𝑧〉) |
90 | 89, 26 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → 𝐶 = 𝐷) |
91 | 90 | eqcomd 2745 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) ∧ 𝑧 = (2nd ‘𝑥)) → 𝐷 = 𝐶) |
92 | 77, 79, 62, 91 | csbiedf 3867 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ dom 𝐴) ∧ 𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦})) → ⦋(2nd
‘𝑥) / 𝑧⦌𝐷 = 𝐶) |
93 | 92 | mpteq2dva 5178 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ ⦋(2nd
‘𝑥) / 𝑧⦌𝐷) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶)) |
94 | 76, 93 | eqtrd 2779 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦}))) = (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶)) |
95 | 94 | oveq2d 7284 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑊 Σg ((𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷) ∘ (2nd ↾ (◡(1st ↾ 𝐴) “ {𝑦})))) = (𝑊 Σg (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶))) |
96 | 57, 95 | eqtr2d 2780 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐴) → (𝑊 Σg (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶)) = (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))) |
97 | 21, 96 | mpteq2da 5176 |
. . 3
⊢ (𝜑 → (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶))) = (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))) |
98 | 97 | oveq2d 7284 |
. 2
⊢ (𝜑 → (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑥 ∈ (◡(1st ↾ 𝐴) “ {𝑦}) ↦ 𝐶)))) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))))) |
99 | 20, 98 | eqtrd 2779 |
1
⊢ (𝜑 → (𝑊 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))))) |