| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptdf | Structured version Visualization version GIF version | ||
| Description: Deduction version of fvmptd 6993 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by AV, 29-Mar-2024.) |
| Ref | Expression |
|---|---|
| fvmptd.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
| fvmptd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
| fvmptd.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| fvmptd.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| fvmptdf.p | ⊢ Ⅎ𝑥𝜑 |
| fvmptdf.a | ⊢ Ⅎ𝑥𝐴 |
| fvmptdf.c | ⊢ Ⅎ𝑥𝐶 |
| Ref | Expression |
|---|---|
| fvmptdf | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptd.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) | |
| 2 | 1 | fveq1d 6878 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) |
| 3 | fvmptd.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 4 | fvmptdf.p | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 5 | nfcsb1v 3898 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵) |
| 7 | fvmptdf.c | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐶) |
| 9 | csbeq1a 3888 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
| 11 | fvmptdf.a | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
| 12 | 11 | nfeq2 2916 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
| 13 | 4, 12 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 = 𝐴) |
| 14 | 7 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → Ⅎ𝑥𝐶) |
| 15 | vex 3463 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝑦 ∈ V) |
| 17 | eqtr 2755 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∧ 𝑦 = 𝐴) → 𝑥 = 𝐴) | |
| 18 | 17 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 = 𝑦) → 𝑥 = 𝐴) |
| 19 | fvmptd.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
| 20 | 18, 19 | sylan2 593 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 = 𝐴 ∧ 𝑥 = 𝑦)) → 𝐵 = 𝐶) |
| 21 | 20 | anassrs 467 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 = 𝐴) ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) |
| 22 | 13, 14, 16, 21 | csbiedf 3904 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
| 23 | 4, 6, 8, 3, 10, 22 | csbie2df 4418 | . . . 4 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| 24 | fvmptd.4 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 25 | 23, 24 | eqeltrd 2834 | . . 3 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) |
| 26 | eqid 2735 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 27 | 26 | fvmpts 6989 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
| 28 | 3, 25, 27 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
| 29 | 2, 28, 23 | 3eqtrd 2774 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2883 Vcvv 3459 ⦋csb 3874 ↦ cmpt 5201 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 |
| This theorem is referenced by: fvmptd 6993 symgval 19352 cfsetsnfsetf 47087 1arymaptfo 48623 2arymaptfo 48634 |
| Copyright terms: Public domain | W3C validator |