| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptdf | Structured version Visualization version GIF version | ||
| Description: Deduction version of fvmptd 6975 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by AV, 29-Mar-2024.) |
| Ref | Expression |
|---|---|
| fvmptd.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
| fvmptd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
| fvmptd.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| fvmptd.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| fvmptdf.p | ⊢ Ⅎ𝑥𝜑 |
| fvmptdf.a | ⊢ Ⅎ𝑥𝐴 |
| fvmptdf.c | ⊢ Ⅎ𝑥𝐶 |
| Ref | Expression |
|---|---|
| fvmptdf | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptd.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) | |
| 2 | 1 | fveq1d 6860 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) |
| 3 | fvmptd.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 4 | fvmptdf.p | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 5 | nfcsb1v 3886 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵) |
| 7 | fvmptdf.c | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐶) |
| 9 | csbeq1a 3876 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
| 11 | fvmptdf.a | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
| 12 | 11 | nfeq2 2909 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
| 13 | 4, 12 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 = 𝐴) |
| 14 | 7 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → Ⅎ𝑥𝐶) |
| 15 | vex 3451 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝑦 ∈ V) |
| 17 | eqtr 2749 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∧ 𝑦 = 𝐴) → 𝑥 = 𝐴) | |
| 18 | 17 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 = 𝑦) → 𝑥 = 𝐴) |
| 19 | fvmptd.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
| 20 | 18, 19 | sylan2 593 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 = 𝐴 ∧ 𝑥 = 𝑦)) → 𝐵 = 𝐶) |
| 21 | 20 | anassrs 467 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 = 𝐴) ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) |
| 22 | 13, 14, 16, 21 | csbiedf 3892 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
| 23 | 4, 6, 8, 3, 10, 22 | csbie2df 4406 | . . . 4 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| 24 | fvmptd.4 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 25 | 23, 24 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) |
| 26 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 27 | 26 | fvmpts 6971 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
| 28 | 3, 25, 27 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
| 29 | 2, 28, 23 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 Vcvv 3447 ⦋csb 3862 ↦ cmpt 5188 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: fvmptd 6975 symgval 19301 cfsetsnfsetf 47059 1arymaptfo 48632 2arymaptfo 48643 |
| Copyright terms: Public domain | W3C validator |