MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptdf Structured version   Visualization version   GIF version

Theorem fvmptdf 7021
Description: Deduction version of fvmptd 7022 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by AV, 29-Mar-2024.)
Hypotheses
Ref Expression
fvmptd.1 (𝜑𝐹 = (𝑥𝐷𝐵))
fvmptd.2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
fvmptd.3 (𝜑𝐴𝐷)
fvmptd.4 (𝜑𝐶𝑉)
fvmptdf.p 𝑥𝜑
fvmptdf.a 𝑥𝐴
fvmptdf.c 𝑥𝐶
Assertion
Ref Expression
fvmptdf (𝜑 → (𝐹𝐴) = 𝐶)
Distinct variable group:   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptdf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvmptd.1 . . 3 (𝜑𝐹 = (𝑥𝐷𝐵))
21fveq1d 6908 . 2 (𝜑 → (𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴))
3 fvmptd.3 . . 3 (𝜑𝐴𝐷)
4 fvmptdf.p . . . . 5 𝑥𝜑
5 nfcsb1v 3932 . . . . . 6 𝑥𝑦 / 𝑥𝐵
65a1i 11 . . . . 5 (𝜑𝑥𝑦 / 𝑥𝐵)
7 fvmptdf.c . . . . . 6 𝑥𝐶
87a1i 11 . . . . 5 (𝜑𝑥𝐶)
9 csbeq1a 3921 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
109adantl 481 . . . . 5 ((𝜑𝑥 = 𝑦) → 𝐵 = 𝑦 / 𝑥𝐵)
11 fvmptdf.a . . . . . . . 8 𝑥𝐴
1211nfeq2 2920 . . . . . . 7 𝑥 𝑦 = 𝐴
134, 12nfan 1896 . . . . . 6 𝑥(𝜑𝑦 = 𝐴)
147a1i 11 . . . . . 6 ((𝜑𝑦 = 𝐴) → 𝑥𝐶)
15 vex 3481 . . . . . . 7 𝑦 ∈ V
1615a1i 11 . . . . . 6 ((𝜑𝑦 = 𝐴) → 𝑦 ∈ V)
17 eqtr 2757 . . . . . . . . 9 ((𝑥 = 𝑦𝑦 = 𝐴) → 𝑥 = 𝐴)
1817ancoms 458 . . . . . . . 8 ((𝑦 = 𝐴𝑥 = 𝑦) → 𝑥 = 𝐴)
19 fvmptd.2 . . . . . . . 8 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
2018, 19sylan2 593 . . . . . . 7 ((𝜑 ∧ (𝑦 = 𝐴𝑥 = 𝑦)) → 𝐵 = 𝐶)
2120anassrs 467 . . . . . 6 (((𝜑𝑦 = 𝐴) ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶)
2213, 14, 16, 21csbiedf 3938 . . . . 5 ((𝜑𝑦 = 𝐴) → 𝑦 / 𝑥𝐵 = 𝐶)
234, 6, 8, 3, 10, 22csbie2df 4448 . . . 4 (𝜑𝐴 / 𝑥𝐵 = 𝐶)
24 fvmptd.4 . . . 4 (𝜑𝐶𝑉)
2523, 24eqeltrd 2838 . . 3 (𝜑𝐴 / 𝑥𝐵𝑉)
26 eqid 2734 . . . 4 (𝑥𝐷𝐵) = (𝑥𝐷𝐵)
2726fvmpts 7018 . . 3 ((𝐴𝐷𝐴 / 𝑥𝐵𝑉) → ((𝑥𝐷𝐵)‘𝐴) = 𝐴 / 𝑥𝐵)
283, 25, 27syl2anc 584 . 2 (𝜑 → ((𝑥𝐷𝐵)‘𝐴) = 𝐴 / 𝑥𝐵)
292, 28, 233eqtrd 2778 1 (𝜑 → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wnf 1779  wcel 2105  wnfc 2887  Vcvv 3477  csb 3907  cmpt 5230  cfv 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-iota 6515  df-fun 6564  df-fv 6570
This theorem is referenced by:  fvmptd  7022  symgval  19402  cfsetsnfsetf  47007  1arymaptfo  48492  2arymaptfo  48503
  Copyright terms: Public domain W3C validator