![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptdf | Structured version Visualization version GIF version |
Description: Deduction version of fvmptd 7022 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by AV, 29-Mar-2024.) |
Ref | Expression |
---|---|
fvmptd.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
fvmptd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
fvmptd.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptd.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
fvmptdf.p | ⊢ Ⅎ𝑥𝜑 |
fvmptdf.a | ⊢ Ⅎ𝑥𝐴 |
fvmptdf.c | ⊢ Ⅎ𝑥𝐶 |
Ref | Expression |
---|---|
fvmptdf | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptd.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) | |
2 | 1 | fveq1d 6908 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) |
3 | fvmptd.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
4 | fvmptdf.p | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
5 | nfcsb1v 3932 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵) |
7 | fvmptdf.c | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐶) |
9 | csbeq1a 3921 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
11 | fvmptdf.a | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
12 | 11 | nfeq2 2920 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
13 | 4, 12 | nfan 1896 | . . . . . 6 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 = 𝐴) |
14 | 7 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → Ⅎ𝑥𝐶) |
15 | vex 3481 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝑦 ∈ V) |
17 | eqtr 2757 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∧ 𝑦 = 𝐴) → 𝑥 = 𝐴) | |
18 | 17 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 = 𝑦) → 𝑥 = 𝐴) |
19 | fvmptd.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
20 | 18, 19 | sylan2 593 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 = 𝐴 ∧ 𝑥 = 𝑦)) → 𝐵 = 𝐶) |
21 | 20 | anassrs 467 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 = 𝐴) ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) |
22 | 13, 14, 16, 21 | csbiedf 3938 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
23 | 4, 6, 8, 3, 10, 22 | csbie2df 4448 | . . . 4 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
24 | fvmptd.4 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
25 | 23, 24 | eqeltrd 2838 | . . 3 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) |
26 | eqid 2734 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
27 | 26 | fvmpts 7018 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
28 | 3, 25, 27 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
29 | 2, 28, 23 | 3eqtrd 2778 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 Ⅎwnf 1779 ∈ wcel 2105 Ⅎwnfc 2887 Vcvv 3477 ⦋csb 3907 ↦ cmpt 5230 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 |
This theorem is referenced by: fvmptd 7022 symgval 19402 cfsetsnfsetf 47007 1arymaptfo 48492 2arymaptfo 48503 |
Copyright terms: Public domain | W3C validator |