![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptdf | Structured version Visualization version GIF version |
Description: Deduction version of fvmptd 7005 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by AV, 29-Mar-2024.) |
Ref | Expression |
---|---|
fvmptd.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
fvmptd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
fvmptd.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptd.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
fvmptdf.p | ⊢ Ⅎ𝑥𝜑 |
fvmptdf.a | ⊢ Ⅎ𝑥𝐴 |
fvmptdf.c | ⊢ Ⅎ𝑥𝐶 |
Ref | Expression |
---|---|
fvmptdf | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptd.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) | |
2 | 1 | fveq1d 6893 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) |
3 | fvmptd.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
4 | fvmptdf.p | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
5 | nfcsb1v 3918 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵) |
7 | fvmptdf.c | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐶) |
9 | csbeq1a 3907 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
11 | fvmptdf.a | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
12 | 11 | nfeq2 2919 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
13 | 4, 12 | nfan 1901 | . . . . . 6 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 = 𝐴) |
14 | 7 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → Ⅎ𝑥𝐶) |
15 | vex 3477 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝑦 ∈ V) |
17 | eqtr 2754 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∧ 𝑦 = 𝐴) → 𝑥 = 𝐴) | |
18 | 17 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 = 𝑦) → 𝑥 = 𝐴) |
19 | fvmptd.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
20 | 18, 19 | sylan2 592 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 = 𝐴 ∧ 𝑥 = 𝑦)) → 𝐵 = 𝐶) |
21 | 20 | anassrs 467 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 = 𝐴) ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) |
22 | 13, 14, 16, 21 | csbiedf 3924 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
23 | 4, 6, 8, 3, 10, 22 | csbie2df 4440 | . . . 4 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
24 | fvmptd.4 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
25 | 23, 24 | eqeltrd 2832 | . . 3 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) |
26 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
27 | 26 | fvmpts 7001 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
28 | 3, 25, 27 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = ⦋𝐴 / 𝑥⦌𝐵) |
29 | 2, 28, 23 | 3eqtrd 2775 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2882 Vcvv 3473 ⦋csb 3893 ↦ cmpt 5231 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 |
This theorem is referenced by: fvmptd 7005 symgval 19278 cfsetsnfsetf 46067 1arymaptfo 47417 2arymaptfo 47428 |
Copyright terms: Public domain | W3C validator |