MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdiscusgr Structured version   Visualization version   GIF version

Theorem vdiscusgr 27619
Description: In a finite complete simple graph with n vertices every vertex has degree 𝑛 − 1. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
hashnbusgrvd.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
vdiscusgr (𝐺 ∈ FinUSGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉

Proof of Theorem vdiscusgr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 hashnbusgrvd.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21uvtxisvtx 27477 . . . . 5 (𝑛 ∈ (UnivVtx‘𝐺) → 𝑛𝑉)
3 fveqeq2 6726 . . . . . . . . . 10 (𝑣 = 𝑛 → (((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) ↔ ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1)))
43rspccv 3534 . . . . . . . . 9 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → (𝑛𝑉 → ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1)))
54adantl 485 . . . . . . . 8 ((𝐺 ∈ FinUSGraph ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → (𝑛𝑉 → ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1)))
65imp 410 . . . . . . 7 (((𝐺 ∈ FinUSGraph ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) ∧ 𝑛𝑉) → ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1))
71usgruvtxvdb 27617 . . . . . . . 8 ((𝐺 ∈ FinUSGraph ∧ 𝑛𝑉) → (𝑛 ∈ (UnivVtx‘𝐺) ↔ ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1)))
87adantlr 715 . . . . . . 7 (((𝐺 ∈ FinUSGraph ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) ∧ 𝑛𝑉) → (𝑛 ∈ (UnivVtx‘𝐺) ↔ ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1)))
96, 8mpbird 260 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) ∧ 𝑛𝑉) → 𝑛 ∈ (UnivVtx‘𝐺))
109ex 416 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → (𝑛𝑉𝑛 ∈ (UnivVtx‘𝐺)))
112, 10impbid2 229 . . . 4 ((𝐺 ∈ FinUSGraph ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → (𝑛 ∈ (UnivVtx‘𝐺) ↔ 𝑛𝑉))
1211eqrdv 2735 . . 3 ((𝐺 ∈ FinUSGraph ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → (UnivVtx‘𝐺) = 𝑉)
13 fusgrusgr 27410 . . . . 5 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)
141cusgruvtxb 27510 . . . . 5 (𝐺 ∈ USGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉))
1513, 14syl 17 . . . 4 (𝐺 ∈ FinUSGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉))
1615adantr 484 . . 3 ((𝐺 ∈ FinUSGraph ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉))
1712, 16mpbird 260 . 2 ((𝐺 ∈ FinUSGraph ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → 𝐺 ∈ ComplUSGraph)
1817ex 416 1 (𝐺 ∈ FinUSGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  cfv 6380  (class class class)co 7213  1c1 10730  cmin 11062  chash 13896  Vtxcvtx 27087  USGraphcusgr 27240  FinUSGraphcfusgr 27404  UnivVtxcuvtx 27473  ComplUSGraphccusgr 27498  VtxDegcvtxdg 27553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-xadd 12705  df-fz 13096  df-hash 13897  df-edg 27139  df-uhgr 27149  df-ushgr 27150  df-upgr 27173  df-umgr 27174  df-uspgr 27241  df-usgr 27242  df-fusgr 27405  df-nbgr 27421  df-uvtx 27474  df-cplgr 27499  df-cusgr 27500  df-vtxdg 27554
This theorem is referenced by:  cusgrm1rusgr  27670
  Copyright terms: Public domain W3C validator