| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vdiscusgr | Structured version Visualization version GIF version | ||
| Description: In a finite complete simple graph with n vertices every vertex has degree 𝑛 − 1. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 17-Dec-2020.) |
| Ref | Expression |
|---|---|
| hashnbusgrvd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| vdiscusgr | ⊢ (𝐺 ∈ FinUSGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnbusgrvd.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | uvtxisvtx 29388 | . . . . 5 ⊢ (𝑛 ∈ (UnivVtx‘𝐺) → 𝑛 ∈ 𝑉) |
| 3 | fveqeq2 6840 | . . . . . . . . . 10 ⊢ (𝑣 = 𝑛 → (((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) ↔ ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1))) | |
| 4 | 3 | rspccv 3570 | . . . . . . . . 9 ⊢ (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → (𝑛 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1))) |
| 5 | 4 | adantl 481 | . . . . . . . 8 ⊢ ((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → (𝑛 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1))) |
| 6 | 5 | imp 406 | . . . . . . 7 ⊢ (((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) ∧ 𝑛 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1)) |
| 7 | 1 | usgruvtxvdb 29529 | . . . . . . . 8 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑛 ∈ 𝑉) → (𝑛 ∈ (UnivVtx‘𝐺) ↔ ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1))) |
| 8 | 7 | adantlr 715 | . . . . . . 7 ⊢ (((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) ∧ 𝑛 ∈ 𝑉) → (𝑛 ∈ (UnivVtx‘𝐺) ↔ ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1))) |
| 9 | 6, 8 | mpbird 257 | . . . . . 6 ⊢ (((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) ∧ 𝑛 ∈ 𝑉) → 𝑛 ∈ (UnivVtx‘𝐺)) |
| 10 | 9 | ex 412 | . . . . 5 ⊢ ((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → (𝑛 ∈ 𝑉 → 𝑛 ∈ (UnivVtx‘𝐺))) |
| 11 | 2, 10 | impbid2 226 | . . . 4 ⊢ ((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → (𝑛 ∈ (UnivVtx‘𝐺) ↔ 𝑛 ∈ 𝑉)) |
| 12 | 11 | eqrdv 2731 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → (UnivVtx‘𝐺) = 𝑉) |
| 13 | fusgrusgr 29321 | . . . . 5 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) | |
| 14 | 1 | cusgruvtxb 29421 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
| 17 | 12, 16 | mpbird 257 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → 𝐺 ∈ ComplUSGraph) |
| 18 | 17 | ex 412 | 1 ⊢ (𝐺 ∈ FinUSGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ‘cfv 6489 (class class class)co 7355 1c1 11018 − cmin 11355 ♯chash 14244 Vtxcvtx 28995 USGraphcusgr 29148 FinUSGraphcfusgr 29315 UnivVtxcuvtx 29384 ComplUSGraphccusgr 29409 VtxDegcvtxdg 29465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9805 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-n0 12393 df-xnn0 12466 df-z 12480 df-uz 12743 df-xadd 13018 df-fz 13415 df-hash 14245 df-edg 29047 df-uhgr 29057 df-ushgr 29058 df-upgr 29081 df-umgr 29082 df-uspgr 29149 df-usgr 29150 df-fusgr 29316 df-nbgr 29332 df-uvtx 29385 df-cplgr 29410 df-cusgr 29411 df-vtxdg 29466 |
| This theorem is referenced by: cusgrm1rusgr 29582 |
| Copyright terms: Public domain | W3C validator |