| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vdiscusgr | Structured version Visualization version GIF version | ||
| Description: In a finite complete simple graph with n vertices every vertex has degree 𝑛 − 1. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 17-Dec-2020.) |
| Ref | Expression |
|---|---|
| hashnbusgrvd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| vdiscusgr | ⊢ (𝐺 ∈ FinUSGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnbusgrvd.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | uvtxisvtx 29292 | . . . . 5 ⊢ (𝑛 ∈ (UnivVtx‘𝐺) → 𝑛 ∈ 𝑉) |
| 3 | fveqeq2 6849 | . . . . . . . . . 10 ⊢ (𝑣 = 𝑛 → (((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) ↔ ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1))) | |
| 4 | 3 | rspccv 3582 | . . . . . . . . 9 ⊢ (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → (𝑛 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1))) |
| 5 | 4 | adantl 481 | . . . . . . . 8 ⊢ ((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → (𝑛 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1))) |
| 6 | 5 | imp 406 | . . . . . . 7 ⊢ (((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) ∧ 𝑛 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1)) |
| 7 | 1 | usgruvtxvdb 29433 | . . . . . . . 8 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑛 ∈ 𝑉) → (𝑛 ∈ (UnivVtx‘𝐺) ↔ ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1))) |
| 8 | 7 | adantlr 715 | . . . . . . 7 ⊢ (((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) ∧ 𝑛 ∈ 𝑉) → (𝑛 ∈ (UnivVtx‘𝐺) ↔ ((VtxDeg‘𝐺)‘𝑛) = ((♯‘𝑉) − 1))) |
| 9 | 6, 8 | mpbird 257 | . . . . . 6 ⊢ (((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) ∧ 𝑛 ∈ 𝑉) → 𝑛 ∈ (UnivVtx‘𝐺)) |
| 10 | 9 | ex 412 | . . . . 5 ⊢ ((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → (𝑛 ∈ 𝑉 → 𝑛 ∈ (UnivVtx‘𝐺))) |
| 11 | 2, 10 | impbid2 226 | . . . 4 ⊢ ((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → (𝑛 ∈ (UnivVtx‘𝐺) ↔ 𝑛 ∈ 𝑉)) |
| 12 | 11 | eqrdv 2727 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → (UnivVtx‘𝐺) = 𝑉) |
| 13 | fusgrusgr 29225 | . . . . 5 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph) | |
| 14 | 1 | cusgruvtxb 29325 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
| 17 | 12, 16 | mpbird 257 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) → 𝐺 ∈ ComplUSGraph) |
| 18 | 17 | ex 412 | 1 ⊢ (𝐺 ∈ FinUSGraph → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1) → 𝐺 ∈ ComplUSGraph)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6499 (class class class)co 7369 1c1 11045 − cmin 11381 ♯chash 14271 Vtxcvtx 28899 USGraphcusgr 29052 FinUSGraphcfusgr 29219 UnivVtxcuvtx 29288 ComplUSGraphccusgr 29313 VtxDegcvtxdg 29369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-xadd 13049 df-fz 13445 df-hash 14272 df-edg 28951 df-uhgr 28961 df-ushgr 28962 df-upgr 28985 df-umgr 28986 df-uspgr 29053 df-usgr 29054 df-fusgr 29220 df-nbgr 29236 df-uvtx 29289 df-cplgr 29314 df-cusgr 29315 df-vtxdg 29370 |
| This theorem is referenced by: cusgrm1rusgr 29486 |
| Copyright terms: Public domain | W3C validator |