![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cuspusp | Structured version Visualization version GIF version |
Description: A complete uniform space is an uniform space. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
Ref | Expression |
---|---|
cuspusp | ⊢ (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusp 23735 | . 2 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ∅c0 4319 ‘cfv 6533 (class class class)co 7394 Basecbs 17128 TopOpenctopn 17351 Filcfil 23280 fLim cflim 23369 UnifStcuss 23689 UnifSpcusp 23690 CauFiluccfilu 23722 CUnifSpccusp 23733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5143 df-iota 6485 df-fv 6541 df-ov 7397 df-cusp 23734 |
This theorem is referenced by: cnextucn 23739 ucnextcn 23740 rrhcn 32872 rrhre 32896 |
Copyright terms: Public domain | W3C validator |