MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cuspusp Structured version   Visualization version   GIF version

Theorem cuspusp 24325
Description: A complete uniform space is an uniform space. (Contributed by Thierry Arnoux, 3-Dec-2017.)
Assertion
Ref Expression
cuspusp (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp)

Proof of Theorem cuspusp
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 iscusp 24324 . 2 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
21simplbi 497 1 (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wne 2938  wral 3059  c0 4339  cfv 6563  (class class class)co 7431  Basecbs 17245  TopOpenctopn 17468  Filcfil 23869   fLim cflim 23958  UnifStcuss 24278  UnifSpcusp 24279  CauFiluccfilu 24311  CUnifSpccusp 24322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-cusp 24323
This theorem is referenced by:  cnextucn  24328  ucnextcn  24329  rrhcn  33960  rrhre  33984
  Copyright terms: Public domain W3C validator