| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cuspusp | Structured version Visualization version GIF version | ||
| Description: A complete uniform space is an uniform space. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
| Ref | Expression |
|---|---|
| cuspusp | ⊢ (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscusp 24211 | . 2 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∅c0 4283 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 TopOpenctopn 17322 Filcfil 23758 fLim cflim 23847 UnifStcuss 24166 UnifSpcusp 24167 CauFiluccfilu 24198 CUnifSpccusp 24209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-cusp 24210 |
| This theorem is referenced by: cnextucn 24215 ucnextcn 24216 rrhcn 34005 rrhre 34029 |
| Copyright terms: Public domain | W3C validator |