MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cuspusp Structured version   Visualization version   GIF version

Theorem cuspusp 23065
Description: A complete uniform space is an uniform space. (Contributed by Thierry Arnoux, 3-Dec-2017.)
Assertion
Ref Expression
cuspusp (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp)

Proof of Theorem cuspusp
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 iscusp 23064 . 2 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
21simplbi 501 1 (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  wne 2935  wral 3054  c0 4221  cfv 6350  (class class class)co 7183  Basecbs 16599  TopOpenctopn 16811  Filcfil 22609   fLim cflim 22698  UnifStcuss 23018  UnifSpcusp 23019  CauFiluccfilu 23051  CUnifSpccusp 23062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-ne 2936  df-ral 3059  df-rab 3063  df-v 3402  df-un 3858  df-in 3860  df-ss 3870  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-iota 6308  df-fv 6358  df-ov 7186  df-cusp 23063
This theorem is referenced by:  cnextucn  23068  ucnextcn  23069  rrhcn  31530  rrhre  31554
  Copyright terms: Public domain W3C validator