![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cuspusp | Structured version Visualization version GIF version |
Description: A complete uniform space is an uniform space. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
Ref | Expression |
---|---|
cuspusp | ⊢ (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusp 24324 | . 2 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∅c0 4339 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 TopOpenctopn 17468 Filcfil 23869 fLim cflim 23958 UnifStcuss 24278 UnifSpcusp 24279 CauFiluccfilu 24311 CUnifSpccusp 24322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-cusp 24323 |
This theorem is referenced by: cnextucn 24328 ucnextcn 24329 rrhcn 33960 rrhre 33984 |
Copyright terms: Public domain | W3C validator |