MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cuspusp Structured version   Visualization version   GIF version

Theorem cuspusp 24212
Description: A complete uniform space is an uniform space. (Contributed by Thierry Arnoux, 3-Dec-2017.)
Assertion
Ref Expression
cuspusp (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp)

Proof of Theorem cuspusp
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 iscusp 24211 . 2 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
21simplbi 497 1 (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wne 2928  wral 3047  c0 4283  cfv 6481  (class class class)co 7346  Basecbs 17117  TopOpenctopn 17322  Filcfil 23758   fLim cflim 23847  UnifStcuss 24166  UnifSpcusp 24167  CauFiluccfilu 24198  CUnifSpccusp 24209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-cusp 24210
This theorem is referenced by:  cnextucn  24215  ucnextcn  24216  rrhcn  34005  rrhre  34029
  Copyright terms: Public domain W3C validator