MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cuspusp Structured version   Visualization version   GIF version

Theorem cuspusp 24330
Description: A complete uniform space is an uniform space. (Contributed by Thierry Arnoux, 3-Dec-2017.)
Assertion
Ref Expression
cuspusp (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp)

Proof of Theorem cuspusp
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 iscusp 24329 . 2 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
21simplbi 497 1 (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2946  wral 3067  c0 4352  cfv 6573  (class class class)co 7448  Basecbs 17258  TopOpenctopn 17481  Filcfil 23874   fLim cflim 23963  UnifStcuss 24283  UnifSpcusp 24284  CauFiluccfilu 24316  CUnifSpccusp 24327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-cusp 24328
This theorem is referenced by:  cnextucn  24333  ucnextcn  24334  rrhcn  33943  rrhre  33967
  Copyright terms: Public domain W3C validator