| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cuspusp | Structured version Visualization version GIF version | ||
| Description: A complete uniform space is an uniform space. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
| Ref | Expression |
|---|---|
| cuspusp | ⊢ (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscusp 24193 | . 2 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∅c0 4299 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 TopOpenctopn 17391 Filcfil 23739 fLim cflim 23828 UnifStcuss 24148 UnifSpcusp 24149 CauFiluccfilu 24180 CUnifSpccusp 24191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-cusp 24192 |
| This theorem is referenced by: cnextucn 24197 ucnextcn 24198 rrhcn 33994 rrhre 34018 |
| Copyright terms: Public domain | W3C validator |