Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrhcn Structured version   Visualization version   GIF version

Theorem rrhcn 34002
Description: If the topology of 𝑅 is Hausdorff, and 𝑅 is a complete uniform space, then the canonical homomorphism from the real numbers to 𝑅 is continuous. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypotheses
Ref Expression
rrhf.d 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
rrhf.j 𝐽 = (topGen‘ran (,))
rrhf.b 𝐵 = (Base‘𝑅)
rrhf.k 𝐾 = (TopOpen‘𝑅)
rrhf.z 𝑍 = (ℤMod‘𝑅)
rrhf.1 (𝜑𝑅 ∈ DivRing)
rrhf.2 (𝜑𝑅 ∈ NrmRing)
rrhf.3 (𝜑𝑍 ∈ NrmMod)
rrhf.4 (𝜑 → (chr‘𝑅) = 0)
rrhf.5 (𝜑𝑅 ∈ CUnifSp)
rrhf.6 (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷))
Assertion
Ref Expression
rrhcn (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾))

Proof of Theorem rrhcn
StepHypRef Expression
1 rrhf.2 . . . . 5 (𝜑𝑅 ∈ NrmRing)
2 nrgngp 24572 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
3 ngpxms 24511 . . . . 5 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
41, 2, 33syl 18 . . . 4 (𝜑𝑅 ∈ ∞MetSp)
5 xmstps 24363 . . . 4 (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp)
64, 5syl 17 . . 3 (𝜑𝑅 ∈ TopSp)
7 rrhf.j . . . 4 𝐽 = (topGen‘ran (,))
8 rrhf.k . . . 4 𝐾 = (TopOpen‘𝑅)
97, 8rrhval 34001 . . 3 (𝑅 ∈ TopSp → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))
106, 9syl 17 . 2 (𝜑 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))
11 rebase 21538 . . 3 ℝ = (Base‘ℝfld)
12 rrhf.b . . 3 𝐵 = (Base‘𝑅)
13 retopn 25301 . . . 4 (topGen‘ran (,)) = (TopOpen‘ℝfld)
147, 13eqtri 2754 . . 3 𝐽 = (TopOpen‘ℝfld)
15 eqid 2731 . . 3 (UnifSt‘ℝfld) = (UnifSt‘ℝfld)
16 df-refld 21537 . . . . . 6 fld = (ℂflds ℝ)
1716oveq1i 7351 . . . . 5 (ℝflds ℚ) = ((ℂflds ℝ) ↾s ℚ)
18 reex 11092 . . . . . 6 ℝ ∈ V
19 qssre 12852 . . . . . 6 ℚ ⊆ ℝ
20 ressabs 17154 . . . . . 6 ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → ((ℂflds ℝ) ↾s ℚ) = (ℂflds ℚ))
2118, 19, 20mp2an 692 . . . . 5 ((ℂflds ℝ) ↾s ℚ) = (ℂflds ℚ)
2217, 21eqtr2i 2755 . . . 4 (ℂflds ℚ) = (ℝflds ℚ)
2322fveq2i 6820 . . 3 (UnifSt‘(ℂflds ℚ)) = (UnifSt‘(ℝflds ℚ))
24 eqid 2731 . . 3 (UnifSt‘𝑅) = (UnifSt‘𝑅)
25 recms 25302 . . . . 5 fld ∈ CMetSp
26 cmsms 25270 . . . . 5 (ℝfld ∈ CMetSp → ℝfld ∈ MetSp)
27 mstps 24365 . . . . 5 (ℝfld ∈ MetSp → ℝfld ∈ TopSp)
2825, 26, 27mp2b 10 . . . 4 fld ∈ TopSp
2928a1i 11 . . 3 (𝜑 → ℝfld ∈ TopSp)
30 recusp 25304 . . . 4 fld ∈ CUnifSp
31 cuspusp 24209 . . . 4 (ℝfld ∈ CUnifSp → ℝfld ∈ UnifSp)
3230, 31mp1i 13 . . 3 (𝜑 → ℝfld ∈ UnifSp)
33 rrhf.5 . . 3 (𝜑𝑅 ∈ CUnifSp)
34 rrhf.d . . . . . 6 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
358, 12, 34xmstopn 24361 . . . . 5 (𝑅 ∈ ∞MetSp → 𝐾 = (MetOpen‘𝐷))
364, 35syl 17 . . . 4 (𝜑𝐾 = (MetOpen‘𝐷))
3712, 34xmsxmet 24366 . . . . 5 (𝑅 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝐵))
38 eqid 2731 . . . . . 6 (MetOpen‘𝐷) = (MetOpen‘𝐷)
3938methaus 24430 . . . . 5 (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ Haus)
404, 37, 393syl 18 . . . 4 (𝜑 → (MetOpen‘𝐷) ∈ Haus)
4136, 40eqeltrd 2831 . . 3 (𝜑𝐾 ∈ Haus)
4219a1i 11 . . 3 (𝜑 → ℚ ⊆ ℝ)
43 eqid 2731 . . . . 5 (ℂflds ℚ) = (ℂflds ℚ)
44 eqid 2731 . . . . 5 (UnifSt‘(ℂflds ℚ)) = (UnifSt‘(ℂflds ℚ))
4534fveq2i 6820 . . . . 5 (metUnif‘𝐷) = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵)))
46 rrhf.z . . . . 5 𝑍 = (ℤMod‘𝑅)
47 rrhf.1 . . . . 5 (𝜑𝑅 ∈ DivRing)
48 rrhf.3 . . . . 5 (𝜑𝑍 ∈ NrmMod)
49 rrhf.4 . . . . 5 (𝜑 → (chr‘𝑅) = 0)
5012, 43, 44, 45, 46, 1, 47, 48, 49qqhucn 33997 . . . 4 (𝜑 → (ℚHom‘𝑅) ∈ ((UnifSt‘(ℂflds ℚ)) Cnu(metUnif‘𝐷)))
51 rrhf.6 . . . . . 6 (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷))
5251eqcomd 2737 . . . . 5 (𝜑 → (metUnif‘𝐷) = (UnifSt‘𝑅))
5352oveq2d 7357 . . . 4 (𝜑 → ((UnifSt‘(ℂflds ℚ)) Cnu(metUnif‘𝐷)) = ((UnifSt‘(ℂflds ℚ)) Cnu(UnifSt‘𝑅)))
5450, 53eleqtrd 2833 . . 3 (𝜑 → (ℚHom‘𝑅) ∈ ((UnifSt‘(ℂflds ℚ)) Cnu(UnifSt‘𝑅)))
557fveq2i 6820 . . . . . 6 (cls‘𝐽) = (cls‘(topGen‘ran (,)))
5655fveq1i 6818 . . . . 5 ((cls‘𝐽)‘ℚ) = ((cls‘(topGen‘ran (,)))‘ℚ)
57 qdensere 24679 . . . . 5 ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ
5856, 57eqtri 2754 . . . 4 ((cls‘𝐽)‘ℚ) = ℝ
5958a1i 11 . . 3 (𝜑 → ((cls‘𝐽)‘ℚ) = ℝ)
6011, 12, 14, 8, 15, 23, 24, 29, 32, 6, 33, 41, 42, 54, 59ucnextcn 24213 . 2 (𝜑 → ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)) ∈ (𝐽 Cn 𝐾))
6110, 60eqeltrd 2831 1 (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897   × cxp 5609  ran crn 5612  cres 5613  cfv 6476  (class class class)co 7341  cr 11000  0cc0 11001  cq 12841  (,)cioo 13240  Basecbs 17115  s cress 17136  distcds 17165  TopOpenctopn 17320  topGenctg 17336  DivRingcdr 20639  ∞Metcxmet 21271  MetOpencmopn 21276  metUnifcmetu 21277  fldccnfld 21286  ℤModczlm 21432  chrcchr 21433  fldcrefld 21536  TopSpctps 22842  clsccl 22928   Cn ccn 23134  Hauscha 23218  CnExtccnext 23969  UnifStcuss 24163  UnifSpcusp 24164   Cnucucn 24184  CUnifSpccusp 24206  ∞MetSpcxms 24227  MetSpcms 24228  NrmGrpcngp 24487  NrmRingcnrg 24489  NrmModcnlm 24490  CMetSpccms 25254  ℚHomcqqh 33975  ℝHomcrrh 33998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080  ax-mulf 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-dvds 16159  df-gcd 16401  df-numer 16641  df-denom 16642  df-gz 16837  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19120  df-cntz 19224  df-od 19435  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-cring 20149  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-dvr 20314  df-rhm 20385  df-nzr 20423  df-subrng 20456  df-subrg 20480  df-drng 20641  df-abv 20719  df-lmod 20790  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-metu 21285  df-cnfld 21287  df-zring 21379  df-zrh 21435  df-zlm 21436  df-chr 21437  df-refld 21537  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-cn 23137  df-cnp 23138  df-haus 23225  df-reg 23226  df-cmp 23297  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-fcls 23851  df-cnext 23970  df-ust 24111  df-utop 24141  df-uss 24166  df-usp 24167  df-ucn 24185  df-cfilu 24196  df-cusp 24207  df-xms 24230  df-ms 24231  df-tms 24232  df-nm 24492  df-ngp 24493  df-nrg 24495  df-nlm 24496  df-cncf 24793  df-cfil 25177  df-cmet 25179  df-cms 25257  df-qqh 33976  df-rrh 34000
This theorem is referenced by:  rrhf  34003  rrhcne  34018
  Copyright terms: Public domain W3C validator