| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrhcn | Structured version Visualization version GIF version | ||
| Description: If the topology of 𝑅 is Hausdorff, and 𝑅 is a complete uniform space, then the canonical homomorphism from the real numbers to 𝑅 is continuous. (Contributed by Thierry Arnoux, 17-Jan-2018.) |
| Ref | Expression |
|---|---|
| rrhf.d | ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) |
| rrhf.j | ⊢ 𝐽 = (topGen‘ran (,)) |
| rrhf.b | ⊢ 𝐵 = (Base‘𝑅) |
| rrhf.k | ⊢ 𝐾 = (TopOpen‘𝑅) |
| rrhf.z | ⊢ 𝑍 = (ℤMod‘𝑅) |
| rrhf.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| rrhf.2 | ⊢ (𝜑 → 𝑅 ∈ NrmRing) |
| rrhf.3 | ⊢ (𝜑 → 𝑍 ∈ NrmMod) |
| rrhf.4 | ⊢ (𝜑 → (chr‘𝑅) = 0) |
| rrhf.5 | ⊢ (𝜑 → 𝑅 ∈ CUnifSp) |
| rrhf.6 | ⊢ (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷)) |
| Ref | Expression |
|---|---|
| rrhcn | ⊢ (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrhf.2 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ NrmRing) | |
| 2 | nrgngp 24572 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
| 3 | ngpxms 24511 | . . . . 5 ⊢ (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ∞MetSp) |
| 5 | xmstps 24363 | . . . 4 ⊢ (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ TopSp) |
| 7 | rrhf.j | . . . 4 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 8 | rrhf.k | . . . 4 ⊢ 𝐾 = (TopOpen‘𝑅) | |
| 9 | 7, 8 | rrhval 34001 | . . 3 ⊢ (𝑅 ∈ TopSp → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
| 10 | 6, 9 | syl 17 | . 2 ⊢ (𝜑 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
| 11 | rebase 21538 | . . 3 ⊢ ℝ = (Base‘ℝfld) | |
| 12 | rrhf.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 13 | retopn 25301 | . . . 4 ⊢ (topGen‘ran (,)) = (TopOpen‘ℝfld) | |
| 14 | 7, 13 | eqtri 2754 | . . 3 ⊢ 𝐽 = (TopOpen‘ℝfld) |
| 15 | eqid 2731 | . . 3 ⊢ (UnifSt‘ℝfld) = (UnifSt‘ℝfld) | |
| 16 | df-refld 21537 | . . . . . 6 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 17 | 16 | oveq1i 7351 | . . . . 5 ⊢ (ℝfld ↾s ℚ) = ((ℂfld ↾s ℝ) ↾s ℚ) |
| 18 | reex 11092 | . . . . . 6 ⊢ ℝ ∈ V | |
| 19 | qssre 12852 | . . . . . 6 ⊢ ℚ ⊆ ℝ | |
| 20 | ressabs 17154 | . . . . . 6 ⊢ ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → ((ℂfld ↾s ℝ) ↾s ℚ) = (ℂfld ↾s ℚ)) | |
| 21 | 18, 19, 20 | mp2an 692 | . . . . 5 ⊢ ((ℂfld ↾s ℝ) ↾s ℚ) = (ℂfld ↾s ℚ) |
| 22 | 17, 21 | eqtr2i 2755 | . . . 4 ⊢ (ℂfld ↾s ℚ) = (ℝfld ↾s ℚ) |
| 23 | 22 | fveq2i 6820 | . . 3 ⊢ (UnifSt‘(ℂfld ↾s ℚ)) = (UnifSt‘(ℝfld ↾s ℚ)) |
| 24 | eqid 2731 | . . 3 ⊢ (UnifSt‘𝑅) = (UnifSt‘𝑅) | |
| 25 | recms 25302 | . . . . 5 ⊢ ℝfld ∈ CMetSp | |
| 26 | cmsms 25270 | . . . . 5 ⊢ (ℝfld ∈ CMetSp → ℝfld ∈ MetSp) | |
| 27 | mstps 24365 | . . . . 5 ⊢ (ℝfld ∈ MetSp → ℝfld ∈ TopSp) | |
| 28 | 25, 26, 27 | mp2b 10 | . . . 4 ⊢ ℝfld ∈ TopSp |
| 29 | 28 | a1i 11 | . . 3 ⊢ (𝜑 → ℝfld ∈ TopSp) |
| 30 | recusp 25304 | . . . 4 ⊢ ℝfld ∈ CUnifSp | |
| 31 | cuspusp 24209 | . . . 4 ⊢ (ℝfld ∈ CUnifSp → ℝfld ∈ UnifSp) | |
| 32 | 30, 31 | mp1i 13 | . . 3 ⊢ (𝜑 → ℝfld ∈ UnifSp) |
| 33 | rrhf.5 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CUnifSp) | |
| 34 | rrhf.d | . . . . . 6 ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) | |
| 35 | 8, 12, 34 | xmstopn 24361 | . . . . 5 ⊢ (𝑅 ∈ ∞MetSp → 𝐾 = (MetOpen‘𝐷)) |
| 36 | 4, 35 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 = (MetOpen‘𝐷)) |
| 37 | 12, 34 | xmsxmet 24366 | . . . . 5 ⊢ (𝑅 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝐵)) |
| 38 | eqid 2731 | . . . . . 6 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 39 | 38 | methaus 24430 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ Haus) |
| 40 | 4, 37, 39 | 3syl 18 | . . . 4 ⊢ (𝜑 → (MetOpen‘𝐷) ∈ Haus) |
| 41 | 36, 40 | eqeltrd 2831 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Haus) |
| 42 | 19 | a1i 11 | . . 3 ⊢ (𝜑 → ℚ ⊆ ℝ) |
| 43 | eqid 2731 | . . . . 5 ⊢ (ℂfld ↾s ℚ) = (ℂfld ↾s ℚ) | |
| 44 | eqid 2731 | . . . . 5 ⊢ (UnifSt‘(ℂfld ↾s ℚ)) = (UnifSt‘(ℂfld ↾s ℚ)) | |
| 45 | 34 | fveq2i 6820 | . . . . 5 ⊢ (metUnif‘𝐷) = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵))) |
| 46 | rrhf.z | . . . . 5 ⊢ 𝑍 = (ℤMod‘𝑅) | |
| 47 | rrhf.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 48 | rrhf.3 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ NrmMod) | |
| 49 | rrhf.4 | . . . . 5 ⊢ (𝜑 → (chr‘𝑅) = 0) | |
| 50 | 12, 43, 44, 45, 46, 1, 47, 48, 49 | qqhucn 33997 | . . . 4 ⊢ (𝜑 → (ℚHom‘𝑅) ∈ ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(metUnif‘𝐷))) |
| 51 | rrhf.6 | . . . . . 6 ⊢ (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷)) | |
| 52 | 51 | eqcomd 2737 | . . . . 5 ⊢ (𝜑 → (metUnif‘𝐷) = (UnifSt‘𝑅)) |
| 53 | 52 | oveq2d 7357 | . . . 4 ⊢ (𝜑 → ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(metUnif‘𝐷)) = ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(UnifSt‘𝑅))) |
| 54 | 50, 53 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → (ℚHom‘𝑅) ∈ ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(UnifSt‘𝑅))) |
| 55 | 7 | fveq2i 6820 | . . . . . 6 ⊢ (cls‘𝐽) = (cls‘(topGen‘ran (,))) |
| 56 | 55 | fveq1i 6818 | . . . . 5 ⊢ ((cls‘𝐽)‘ℚ) = ((cls‘(topGen‘ran (,)))‘ℚ) |
| 57 | qdensere 24679 | . . . . 5 ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ | |
| 58 | 56, 57 | eqtri 2754 | . . . 4 ⊢ ((cls‘𝐽)‘ℚ) = ℝ |
| 59 | 58 | a1i 11 | . . 3 ⊢ (𝜑 → ((cls‘𝐽)‘ℚ) = ℝ) |
| 60 | 11, 12, 14, 8, 15, 23, 24, 29, 32, 6, 33, 41, 42, 54, 59 | ucnextcn 24213 | . 2 ⊢ (𝜑 → ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)) ∈ (𝐽 Cn 𝐾)) |
| 61 | 10, 60 | eqeltrd 2831 | 1 ⊢ (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 × cxp 5609 ran crn 5612 ↾ cres 5613 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 0cc0 11001 ℚcq 12841 (,)cioo 13240 Basecbs 17115 ↾s cress 17136 distcds 17165 TopOpenctopn 17320 topGenctg 17336 DivRingcdr 20639 ∞Metcxmet 21271 MetOpencmopn 21276 metUnifcmetu 21277 ℂfldccnfld 21286 ℤModczlm 21432 chrcchr 21433 ℝfldcrefld 21536 TopSpctps 22842 clsccl 22928 Cn ccn 23134 Hauscha 23218 CnExtccnext 23969 UnifStcuss 24163 UnifSpcusp 24164 Cnucucn 24184 CUnifSpccusp 24206 ∞MetSpcxms 24227 MetSpcms 24228 NrmGrpcngp 24487 NrmRingcnrg 24489 NrmModcnlm 24490 CMetSpccms 25254 ℚHomcqqh 33975 ℝHomcrrh 33998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 ax-mulf 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-dvds 16159 df-gcd 16401 df-numer 16641 df-denom 16642 df-gz 16837 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19120 df-cntz 19224 df-od 19435 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-dvr 20314 df-rhm 20385 df-nzr 20423 df-subrng 20456 df-subrg 20480 df-drng 20641 df-abv 20719 df-lmod 20790 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-metu 21285 df-cnfld 21287 df-zring 21379 df-zrh 21435 df-zlm 21436 df-chr 21437 df-refld 21537 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-cn 23137 df-cnp 23138 df-haus 23225 df-reg 23226 df-cmp 23297 df-tx 23472 df-hmeo 23665 df-fil 23756 df-fm 23848 df-flim 23849 df-flf 23850 df-fcls 23851 df-cnext 23970 df-ust 24111 df-utop 24141 df-uss 24166 df-usp 24167 df-ucn 24185 df-cfilu 24196 df-cusp 24207 df-xms 24230 df-ms 24231 df-tms 24232 df-nm 24492 df-ngp 24493 df-nrg 24495 df-nlm 24496 df-cncf 24793 df-cfil 25177 df-cmet 25179 df-cms 25257 df-qqh 33976 df-rrh 34000 |
| This theorem is referenced by: rrhf 34003 rrhcne 34018 |
| Copyright terms: Public domain | W3C validator |