![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrhcn | Structured version Visualization version GIF version |
Description: If the topology of π is Hausdorff, and π is a complete uniform space, then the canonical homomorphism from the real numbers to π is continuous. (Contributed by Thierry Arnoux, 17-Jan-2018.) |
Ref | Expression |
---|---|
rrhf.d | β’ π· = ((distβπ ) βΎ (π΅ Γ π΅)) |
rrhf.j | β’ π½ = (topGenβran (,)) |
rrhf.b | β’ π΅ = (Baseβπ ) |
rrhf.k | β’ πΎ = (TopOpenβπ ) |
rrhf.z | β’ π = (β€Modβπ ) |
rrhf.1 | β’ (π β π β DivRing) |
rrhf.2 | β’ (π β π β NrmRing) |
rrhf.3 | β’ (π β π β NrmMod) |
rrhf.4 | β’ (π β (chrβπ ) = 0) |
rrhf.5 | β’ (π β π β CUnifSp) |
rrhf.6 | β’ (π β (UnifStβπ ) = (metUnifβπ·)) |
Ref | Expression |
---|---|
rrhcn | β’ (π β (βHomβπ ) β (π½ Cn πΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrhf.2 | . . . . 5 β’ (π β π β NrmRing) | |
2 | nrgngp 24523 | . . . . 5 β’ (π β NrmRing β π β NrmGrp) | |
3 | ngpxms 24454 | . . . . 5 β’ (π β NrmGrp β π β βMetSp) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 β’ (π β π β βMetSp) |
5 | xmstps 24303 | . . . 4 β’ (π β βMetSp β π β TopSp) | |
6 | 4, 5 | syl 17 | . . 3 β’ (π β π β TopSp) |
7 | rrhf.j | . . . 4 β’ π½ = (topGenβran (,)) | |
8 | rrhf.k | . . . 4 β’ πΎ = (TopOpenβπ ) | |
9 | 7, 8 | rrhval 33496 | . . 3 β’ (π β TopSp β (βHomβπ ) = ((π½CnExtπΎ)β(βHomβπ ))) |
10 | 6, 9 | syl 17 | . 2 β’ (π β (βHomβπ ) = ((π½CnExtπΎ)β(βHomβπ ))) |
11 | rebase 21488 | . . 3 β’ β = (Baseββfld) | |
12 | rrhf.b | . . 3 β’ π΅ = (Baseβπ ) | |
13 | retopn 25251 | . . . 4 β’ (topGenβran (,)) = (TopOpenββfld) | |
14 | 7, 13 | eqtri 2752 | . . 3 β’ π½ = (TopOpenββfld) |
15 | eqid 2724 | . . 3 β’ (UnifStββfld) = (UnifStββfld) | |
16 | df-refld 21487 | . . . . . 6 β’ βfld = (βfld βΎs β) | |
17 | 16 | oveq1i 7412 | . . . . 5 β’ (βfld βΎs β) = ((βfld βΎs β) βΎs β) |
18 | reex 11198 | . . . . . 6 β’ β β V | |
19 | qssre 12942 | . . . . . 6 β’ β β β | |
20 | ressabs 17199 | . . . . . 6 β’ ((β β V β§ β β β) β ((βfld βΎs β) βΎs β) = (βfld βΎs β)) | |
21 | 18, 19, 20 | mp2an 689 | . . . . 5 β’ ((βfld βΎs β) βΎs β) = (βfld βΎs β) |
22 | 17, 21 | eqtr2i 2753 | . . . 4 β’ (βfld βΎs β) = (βfld βΎs β) |
23 | 22 | fveq2i 6885 | . . 3 β’ (UnifStβ(βfld βΎs β)) = (UnifStβ(βfld βΎs β)) |
24 | eqid 2724 | . . 3 β’ (UnifStβπ ) = (UnifStβπ ) | |
25 | recms 25252 | . . . . 5 β’ βfld β CMetSp | |
26 | cmsms 25220 | . . . . 5 β’ (βfld β CMetSp β βfld β MetSp) | |
27 | mstps 24305 | . . . . 5 β’ (βfld β MetSp β βfld β TopSp) | |
28 | 25, 26, 27 | mp2b 10 | . . . 4 β’ βfld β TopSp |
29 | 28 | a1i 11 | . . 3 β’ (π β βfld β TopSp) |
30 | recusp 25254 | . . . 4 β’ βfld β CUnifSp | |
31 | cuspusp 24149 | . . . 4 β’ (βfld β CUnifSp β βfld β UnifSp) | |
32 | 30, 31 | mp1i 13 | . . 3 β’ (π β βfld β UnifSp) |
33 | rrhf.5 | . . 3 β’ (π β π β CUnifSp) | |
34 | rrhf.d | . . . . . 6 β’ π· = ((distβπ ) βΎ (π΅ Γ π΅)) | |
35 | 8, 12, 34 | xmstopn 24301 | . . . . 5 β’ (π β βMetSp β πΎ = (MetOpenβπ·)) |
36 | 4, 35 | syl 17 | . . . 4 β’ (π β πΎ = (MetOpenβπ·)) |
37 | 12, 34 | xmsxmet 24306 | . . . . 5 β’ (π β βMetSp β π· β (βMetβπ΅)) |
38 | eqid 2724 | . . . . . 6 β’ (MetOpenβπ·) = (MetOpenβπ·) | |
39 | 38 | methaus 24373 | . . . . 5 β’ (π· β (βMetβπ΅) β (MetOpenβπ·) β Haus) |
40 | 4, 37, 39 | 3syl 18 | . . . 4 β’ (π β (MetOpenβπ·) β Haus) |
41 | 36, 40 | eqeltrd 2825 | . . 3 β’ (π β πΎ β Haus) |
42 | 19 | a1i 11 | . . 3 β’ (π β β β β) |
43 | eqid 2724 | . . . . 5 β’ (βfld βΎs β) = (βfld βΎs β) | |
44 | eqid 2724 | . . . . 5 β’ (UnifStβ(βfld βΎs β)) = (UnifStβ(βfld βΎs β)) | |
45 | 34 | fveq2i 6885 | . . . . 5 β’ (metUnifβπ·) = (metUnifβ((distβπ ) βΎ (π΅ Γ π΅))) |
46 | rrhf.z | . . . . 5 β’ π = (β€Modβπ ) | |
47 | rrhf.1 | . . . . 5 β’ (π β π β DivRing) | |
48 | rrhf.3 | . . . . 5 β’ (π β π β NrmMod) | |
49 | rrhf.4 | . . . . 5 β’ (π β (chrβπ ) = 0) | |
50 | 12, 43, 44, 45, 46, 1, 47, 48, 49 | qqhucn 33492 | . . . 4 β’ (π β (βHomβπ ) β ((UnifStβ(βfld βΎs β)) Cnu(metUnifβπ·))) |
51 | rrhf.6 | . . . . . 6 β’ (π β (UnifStβπ ) = (metUnifβπ·)) | |
52 | 51 | eqcomd 2730 | . . . . 5 β’ (π β (metUnifβπ·) = (UnifStβπ )) |
53 | 52 | oveq2d 7418 | . . . 4 β’ (π β ((UnifStβ(βfld βΎs β)) Cnu(metUnifβπ·)) = ((UnifStβ(βfld βΎs β)) Cnu(UnifStβπ ))) |
54 | 50, 53 | eleqtrd 2827 | . . 3 β’ (π β (βHomβπ ) β ((UnifStβ(βfld βΎs β)) Cnu(UnifStβπ ))) |
55 | 7 | fveq2i 6885 | . . . . . 6 β’ (clsβπ½) = (clsβ(topGenβran (,))) |
56 | 55 | fveq1i 6883 | . . . . 5 β’ ((clsβπ½)ββ) = ((clsβ(topGenβran (,)))ββ) |
57 | qdensere 24630 | . . . . 5 β’ ((clsβ(topGenβran (,)))ββ) = β | |
58 | 56, 57 | eqtri 2752 | . . . 4 β’ ((clsβπ½)ββ) = β |
59 | 58 | a1i 11 | . . 3 β’ (π β ((clsβπ½)ββ) = β) |
60 | 11, 12, 14, 8, 15, 23, 24, 29, 32, 6, 33, 41, 42, 54, 59 | ucnextcn 24153 | . 2 β’ (π β ((π½CnExtπΎ)β(βHomβπ )) β (π½ Cn πΎ)) |
61 | 10, 60 | eqeltrd 2825 | 1 β’ (π β (βHomβπ ) β (π½ Cn πΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3466 β wss 3941 Γ cxp 5665 ran crn 5668 βΎ cres 5669 βcfv 6534 (class class class)co 7402 βcr 11106 0cc0 11107 βcq 12931 (,)cioo 13325 Basecbs 17149 βΎs cress 17178 distcds 17211 TopOpenctopn 17372 topGenctg 17388 DivRingcdr 20583 βMetcxmet 21219 MetOpencmopn 21224 metUnifcmetu 21225 βfldccnfld 21234 β€Modczlm 21376 chrcchr 21377 βfldcrefld 21486 TopSpctps 22778 clsccl 22866 Cn ccn 23072 Hauscha 23156 CnExtccnext 23907 UnifStcuss 24102 UnifSpcusp 24103 Cnucucn 24124 CUnifSpccusp 24146 βMetSpcxms 24167 MetSpcms 24168 NrmGrpcngp 24430 NrmRingcnrg 24432 NrmModcnlm 24433 CMetSpccms 25204 βHomcqqh 33472 βHomcrrh 33493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 ax-addf 11186 ax-mulf 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8700 df-map 8819 df-pm 8820 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-fi 9403 df-sup 9434 df-inf 9435 df-oi 9502 df-card 9931 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12976 df-xneg 13093 df-xadd 13094 df-xmul 13095 df-ioo 13329 df-ico 13331 df-icc 13332 df-fz 13486 df-fzo 13629 df-fl 13758 df-mod 13836 df-seq 13968 df-exp 14029 df-hash 14292 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-dvds 16201 df-gcd 16439 df-numer 16676 df-denom 16677 df-gz 16868 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-mhm 18709 df-submnd 18710 df-grp 18862 df-minusg 18863 df-sbg 18864 df-mulg 18992 df-subg 19046 df-ghm 19135 df-cntz 19229 df-od 19444 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-cring 20137 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-rhm 20370 df-nzr 20411 df-subrng 20442 df-subrg 20467 df-drng 20585 df-abv 20656 df-lmod 20704 df-psmet 21226 df-xmet 21227 df-met 21228 df-bl 21229 df-mopn 21230 df-fbas 21231 df-fg 21232 df-metu 21233 df-cnfld 21235 df-zring 21323 df-zrh 21379 df-zlm 21380 df-chr 21381 df-refld 21487 df-top 22740 df-topon 22757 df-topsp 22779 df-bases 22793 df-cld 22867 df-ntr 22868 df-cls 22869 df-nei 22946 df-cn 23075 df-cnp 23076 df-haus 23163 df-reg 23164 df-cmp 23235 df-tx 23410 df-hmeo 23603 df-fil 23694 df-fm 23786 df-flim 23787 df-flf 23788 df-fcls 23789 df-cnext 23908 df-ust 24049 df-utop 24080 df-uss 24105 df-usp 24106 df-ucn 24125 df-cfilu 24136 df-cusp 24147 df-xms 24170 df-ms 24171 df-tms 24172 df-nm 24435 df-ngp 24436 df-nrg 24438 df-nlm 24439 df-cncf 24742 df-cfil 25127 df-cmet 25129 df-cms 25207 df-qqh 33473 df-rrh 33495 |
This theorem is referenced by: rrhf 33498 rrhcne 33513 |
Copyright terms: Public domain | W3C validator |