| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrhcn | Structured version Visualization version GIF version | ||
| Description: If the topology of 𝑅 is Hausdorff, and 𝑅 is a complete uniform space, then the canonical homomorphism from the real numbers to 𝑅 is continuous. (Contributed by Thierry Arnoux, 17-Jan-2018.) |
| Ref | Expression |
|---|---|
| rrhf.d | ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) |
| rrhf.j | ⊢ 𝐽 = (topGen‘ran (,)) |
| rrhf.b | ⊢ 𝐵 = (Base‘𝑅) |
| rrhf.k | ⊢ 𝐾 = (TopOpen‘𝑅) |
| rrhf.z | ⊢ 𝑍 = (ℤMod‘𝑅) |
| rrhf.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| rrhf.2 | ⊢ (𝜑 → 𝑅 ∈ NrmRing) |
| rrhf.3 | ⊢ (𝜑 → 𝑍 ∈ NrmMod) |
| rrhf.4 | ⊢ (𝜑 → (chr‘𝑅) = 0) |
| rrhf.5 | ⊢ (𝜑 → 𝑅 ∈ CUnifSp) |
| rrhf.6 | ⊢ (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷)) |
| Ref | Expression |
|---|---|
| rrhcn | ⊢ (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrhf.2 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ NrmRing) | |
| 2 | nrgngp 24606 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
| 3 | ngpxms 24545 | . . . . 5 ⊢ (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ∞MetSp) |
| 5 | xmstps 24397 | . . . 4 ⊢ (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ TopSp) |
| 7 | rrhf.j | . . . 4 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 8 | rrhf.k | . . . 4 ⊢ 𝐾 = (TopOpen‘𝑅) | |
| 9 | 7, 8 | rrhval 34032 | . . 3 ⊢ (𝑅 ∈ TopSp → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
| 10 | 6, 9 | syl 17 | . 2 ⊢ (𝜑 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
| 11 | rebase 21571 | . . 3 ⊢ ℝ = (Base‘ℝfld) | |
| 12 | rrhf.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 13 | retopn 25336 | . . . 4 ⊢ (topGen‘ran (,)) = (TopOpen‘ℝfld) | |
| 14 | 7, 13 | eqtri 2759 | . . 3 ⊢ 𝐽 = (TopOpen‘ℝfld) |
| 15 | eqid 2736 | . . 3 ⊢ (UnifSt‘ℝfld) = (UnifSt‘ℝfld) | |
| 16 | df-refld 21570 | . . . . . 6 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 17 | 16 | oveq1i 7420 | . . . . 5 ⊢ (ℝfld ↾s ℚ) = ((ℂfld ↾s ℝ) ↾s ℚ) |
| 18 | reex 11225 | . . . . . 6 ⊢ ℝ ∈ V | |
| 19 | qssre 12980 | . . . . . 6 ⊢ ℚ ⊆ ℝ | |
| 20 | ressabs 17274 | . . . . . 6 ⊢ ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → ((ℂfld ↾s ℝ) ↾s ℚ) = (ℂfld ↾s ℚ)) | |
| 21 | 18, 19, 20 | mp2an 692 | . . . . 5 ⊢ ((ℂfld ↾s ℝ) ↾s ℚ) = (ℂfld ↾s ℚ) |
| 22 | 17, 21 | eqtr2i 2760 | . . . 4 ⊢ (ℂfld ↾s ℚ) = (ℝfld ↾s ℚ) |
| 23 | 22 | fveq2i 6884 | . . 3 ⊢ (UnifSt‘(ℂfld ↾s ℚ)) = (UnifSt‘(ℝfld ↾s ℚ)) |
| 24 | eqid 2736 | . . 3 ⊢ (UnifSt‘𝑅) = (UnifSt‘𝑅) | |
| 25 | recms 25337 | . . . . 5 ⊢ ℝfld ∈ CMetSp | |
| 26 | cmsms 25305 | . . . . 5 ⊢ (ℝfld ∈ CMetSp → ℝfld ∈ MetSp) | |
| 27 | mstps 24399 | . . . . 5 ⊢ (ℝfld ∈ MetSp → ℝfld ∈ TopSp) | |
| 28 | 25, 26, 27 | mp2b 10 | . . . 4 ⊢ ℝfld ∈ TopSp |
| 29 | 28 | a1i 11 | . . 3 ⊢ (𝜑 → ℝfld ∈ TopSp) |
| 30 | recusp 25339 | . . . 4 ⊢ ℝfld ∈ CUnifSp | |
| 31 | cuspusp 24243 | . . . 4 ⊢ (ℝfld ∈ CUnifSp → ℝfld ∈ UnifSp) | |
| 32 | 30, 31 | mp1i 13 | . . 3 ⊢ (𝜑 → ℝfld ∈ UnifSp) |
| 33 | rrhf.5 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CUnifSp) | |
| 34 | rrhf.d | . . . . . 6 ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) | |
| 35 | 8, 12, 34 | xmstopn 24395 | . . . . 5 ⊢ (𝑅 ∈ ∞MetSp → 𝐾 = (MetOpen‘𝐷)) |
| 36 | 4, 35 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 = (MetOpen‘𝐷)) |
| 37 | 12, 34 | xmsxmet 24400 | . . . . 5 ⊢ (𝑅 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝐵)) |
| 38 | eqid 2736 | . . . . . 6 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 39 | 38 | methaus 24464 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ Haus) |
| 40 | 4, 37, 39 | 3syl 18 | . . . 4 ⊢ (𝜑 → (MetOpen‘𝐷) ∈ Haus) |
| 41 | 36, 40 | eqeltrd 2835 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Haus) |
| 42 | 19 | a1i 11 | . . 3 ⊢ (𝜑 → ℚ ⊆ ℝ) |
| 43 | eqid 2736 | . . . . 5 ⊢ (ℂfld ↾s ℚ) = (ℂfld ↾s ℚ) | |
| 44 | eqid 2736 | . . . . 5 ⊢ (UnifSt‘(ℂfld ↾s ℚ)) = (UnifSt‘(ℂfld ↾s ℚ)) | |
| 45 | 34 | fveq2i 6884 | . . . . 5 ⊢ (metUnif‘𝐷) = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵))) |
| 46 | rrhf.z | . . . . 5 ⊢ 𝑍 = (ℤMod‘𝑅) | |
| 47 | rrhf.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 48 | rrhf.3 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ NrmMod) | |
| 49 | rrhf.4 | . . . . 5 ⊢ (𝜑 → (chr‘𝑅) = 0) | |
| 50 | 12, 43, 44, 45, 46, 1, 47, 48, 49 | qqhucn 34028 | . . . 4 ⊢ (𝜑 → (ℚHom‘𝑅) ∈ ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(metUnif‘𝐷))) |
| 51 | rrhf.6 | . . . . . 6 ⊢ (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷)) | |
| 52 | 51 | eqcomd 2742 | . . . . 5 ⊢ (𝜑 → (metUnif‘𝐷) = (UnifSt‘𝑅)) |
| 53 | 52 | oveq2d 7426 | . . . 4 ⊢ (𝜑 → ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(metUnif‘𝐷)) = ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(UnifSt‘𝑅))) |
| 54 | 50, 53 | eleqtrd 2837 | . . 3 ⊢ (𝜑 → (ℚHom‘𝑅) ∈ ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(UnifSt‘𝑅))) |
| 55 | 7 | fveq2i 6884 | . . . . . 6 ⊢ (cls‘𝐽) = (cls‘(topGen‘ran (,))) |
| 56 | 55 | fveq1i 6882 | . . . . 5 ⊢ ((cls‘𝐽)‘ℚ) = ((cls‘(topGen‘ran (,)))‘ℚ) |
| 57 | qdensere 24713 | . . . . 5 ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ | |
| 58 | 56, 57 | eqtri 2759 | . . . 4 ⊢ ((cls‘𝐽)‘ℚ) = ℝ |
| 59 | 58 | a1i 11 | . . 3 ⊢ (𝜑 → ((cls‘𝐽)‘ℚ) = ℝ) |
| 60 | 11, 12, 14, 8, 15, 23, 24, 29, 32, 6, 33, 41, 42, 54, 59 | ucnextcn 24247 | . 2 ⊢ (𝜑 → ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)) ∈ (𝐽 Cn 𝐾)) |
| 61 | 10, 60 | eqeltrd 2835 | 1 ⊢ (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 × cxp 5657 ran crn 5660 ↾ cres 5661 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 0cc0 11134 ℚcq 12969 (,)cioo 13367 Basecbs 17233 ↾s cress 17256 distcds 17285 TopOpenctopn 17440 topGenctg 17456 DivRingcdr 20694 ∞Metcxmet 21305 MetOpencmopn 21310 metUnifcmetu 21311 ℂfldccnfld 21320 ℤModczlm 21466 chrcchr 21467 ℝfldcrefld 21569 TopSpctps 22875 clsccl 22961 Cn ccn 23167 Hauscha 23251 CnExtccnext 24002 UnifStcuss 24197 UnifSpcusp 24198 Cnucucn 24218 CUnifSpccusp 24240 ∞MetSpcxms 24261 MetSpcms 24262 NrmGrpcngp 24521 NrmRingcnrg 24523 NrmModcnlm 24524 CMetSpccms 25289 ℚHomcqqh 34006 ℝHomcrrh 34029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-dvds 16278 df-gcd 16519 df-numer 16759 df-denom 16760 df-gz 16955 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-cntz 19305 df-od 19514 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 df-rhm 20437 df-nzr 20478 df-subrng 20511 df-subrg 20535 df-drng 20696 df-abv 20774 df-lmod 20824 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-metu 21319 df-cnfld 21321 df-zring 21413 df-zrh 21469 df-zlm 21470 df-chr 21471 df-refld 21570 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-cn 23170 df-cnp 23171 df-haus 23258 df-reg 23259 df-cmp 23330 df-tx 23505 df-hmeo 23698 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-fcls 23884 df-cnext 24003 df-ust 24144 df-utop 24175 df-uss 24200 df-usp 24201 df-ucn 24219 df-cfilu 24230 df-cusp 24241 df-xms 24264 df-ms 24265 df-tms 24266 df-nm 24526 df-ngp 24527 df-nrg 24529 df-nlm 24530 df-cncf 24827 df-cfil 25212 df-cmet 25214 df-cms 25292 df-qqh 34007 df-rrh 34031 |
| This theorem is referenced by: rrhf 34034 rrhcne 34049 |
| Copyright terms: Public domain | W3C validator |