| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrhcn | Structured version Visualization version GIF version | ||
| Description: If the topology of 𝑅 is Hausdorff, and 𝑅 is a complete uniform space, then the canonical homomorphism from the real numbers to 𝑅 is continuous. (Contributed by Thierry Arnoux, 17-Jan-2018.) |
| Ref | Expression |
|---|---|
| rrhf.d | ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) |
| rrhf.j | ⊢ 𝐽 = (topGen‘ran (,)) |
| rrhf.b | ⊢ 𝐵 = (Base‘𝑅) |
| rrhf.k | ⊢ 𝐾 = (TopOpen‘𝑅) |
| rrhf.z | ⊢ 𝑍 = (ℤMod‘𝑅) |
| rrhf.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| rrhf.2 | ⊢ (𝜑 → 𝑅 ∈ NrmRing) |
| rrhf.3 | ⊢ (𝜑 → 𝑍 ∈ NrmMod) |
| rrhf.4 | ⊢ (𝜑 → (chr‘𝑅) = 0) |
| rrhf.5 | ⊢ (𝜑 → 𝑅 ∈ CUnifSp) |
| rrhf.6 | ⊢ (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷)) |
| Ref | Expression |
|---|---|
| rrhcn | ⊢ (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrhf.2 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ NrmRing) | |
| 2 | nrgngp 24548 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
| 3 | ngpxms 24487 | . . . . 5 ⊢ (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ∞MetSp) |
| 5 | xmstps 24339 | . . . 4 ⊢ (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ TopSp) |
| 7 | rrhf.j | . . . 4 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 8 | rrhf.k | . . . 4 ⊢ 𝐾 = (TopOpen‘𝑅) | |
| 9 | 7, 8 | rrhval 33963 | . . 3 ⊢ (𝑅 ∈ TopSp → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
| 10 | 6, 9 | syl 17 | . 2 ⊢ (𝜑 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
| 11 | rebase 21513 | . . 3 ⊢ ℝ = (Base‘ℝfld) | |
| 12 | rrhf.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 13 | retopn 25277 | . . . 4 ⊢ (topGen‘ran (,)) = (TopOpen‘ℝfld) | |
| 14 | 7, 13 | eqtri 2752 | . . 3 ⊢ 𝐽 = (TopOpen‘ℝfld) |
| 15 | eqid 2729 | . . 3 ⊢ (UnifSt‘ℝfld) = (UnifSt‘ℝfld) | |
| 16 | df-refld 21512 | . . . . . 6 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 17 | 16 | oveq1i 7359 | . . . . 5 ⊢ (ℝfld ↾s ℚ) = ((ℂfld ↾s ℝ) ↾s ℚ) |
| 18 | reex 11100 | . . . . . 6 ⊢ ℝ ∈ V | |
| 19 | qssre 12860 | . . . . . 6 ⊢ ℚ ⊆ ℝ | |
| 20 | ressabs 17159 | . . . . . 6 ⊢ ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → ((ℂfld ↾s ℝ) ↾s ℚ) = (ℂfld ↾s ℚ)) | |
| 21 | 18, 19, 20 | mp2an 692 | . . . . 5 ⊢ ((ℂfld ↾s ℝ) ↾s ℚ) = (ℂfld ↾s ℚ) |
| 22 | 17, 21 | eqtr2i 2753 | . . . 4 ⊢ (ℂfld ↾s ℚ) = (ℝfld ↾s ℚ) |
| 23 | 22 | fveq2i 6825 | . . 3 ⊢ (UnifSt‘(ℂfld ↾s ℚ)) = (UnifSt‘(ℝfld ↾s ℚ)) |
| 24 | eqid 2729 | . . 3 ⊢ (UnifSt‘𝑅) = (UnifSt‘𝑅) | |
| 25 | recms 25278 | . . . . 5 ⊢ ℝfld ∈ CMetSp | |
| 26 | cmsms 25246 | . . . . 5 ⊢ (ℝfld ∈ CMetSp → ℝfld ∈ MetSp) | |
| 27 | mstps 24341 | . . . . 5 ⊢ (ℝfld ∈ MetSp → ℝfld ∈ TopSp) | |
| 28 | 25, 26, 27 | mp2b 10 | . . . 4 ⊢ ℝfld ∈ TopSp |
| 29 | 28 | a1i 11 | . . 3 ⊢ (𝜑 → ℝfld ∈ TopSp) |
| 30 | recusp 25280 | . . . 4 ⊢ ℝfld ∈ CUnifSp | |
| 31 | cuspusp 24185 | . . . 4 ⊢ (ℝfld ∈ CUnifSp → ℝfld ∈ UnifSp) | |
| 32 | 30, 31 | mp1i 13 | . . 3 ⊢ (𝜑 → ℝfld ∈ UnifSp) |
| 33 | rrhf.5 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CUnifSp) | |
| 34 | rrhf.d | . . . . . 6 ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) | |
| 35 | 8, 12, 34 | xmstopn 24337 | . . . . 5 ⊢ (𝑅 ∈ ∞MetSp → 𝐾 = (MetOpen‘𝐷)) |
| 36 | 4, 35 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 = (MetOpen‘𝐷)) |
| 37 | 12, 34 | xmsxmet 24342 | . . . . 5 ⊢ (𝑅 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝐵)) |
| 38 | eqid 2729 | . . . . . 6 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 39 | 38 | methaus 24406 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ Haus) |
| 40 | 4, 37, 39 | 3syl 18 | . . . 4 ⊢ (𝜑 → (MetOpen‘𝐷) ∈ Haus) |
| 41 | 36, 40 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Haus) |
| 42 | 19 | a1i 11 | . . 3 ⊢ (𝜑 → ℚ ⊆ ℝ) |
| 43 | eqid 2729 | . . . . 5 ⊢ (ℂfld ↾s ℚ) = (ℂfld ↾s ℚ) | |
| 44 | eqid 2729 | . . . . 5 ⊢ (UnifSt‘(ℂfld ↾s ℚ)) = (UnifSt‘(ℂfld ↾s ℚ)) | |
| 45 | 34 | fveq2i 6825 | . . . . 5 ⊢ (metUnif‘𝐷) = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵))) |
| 46 | rrhf.z | . . . . 5 ⊢ 𝑍 = (ℤMod‘𝑅) | |
| 47 | rrhf.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 48 | rrhf.3 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ NrmMod) | |
| 49 | rrhf.4 | . . . . 5 ⊢ (𝜑 → (chr‘𝑅) = 0) | |
| 50 | 12, 43, 44, 45, 46, 1, 47, 48, 49 | qqhucn 33959 | . . . 4 ⊢ (𝜑 → (ℚHom‘𝑅) ∈ ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(metUnif‘𝐷))) |
| 51 | rrhf.6 | . . . . . 6 ⊢ (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷)) | |
| 52 | 51 | eqcomd 2735 | . . . . 5 ⊢ (𝜑 → (metUnif‘𝐷) = (UnifSt‘𝑅)) |
| 53 | 52 | oveq2d 7365 | . . . 4 ⊢ (𝜑 → ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(metUnif‘𝐷)) = ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(UnifSt‘𝑅))) |
| 54 | 50, 53 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → (ℚHom‘𝑅) ∈ ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(UnifSt‘𝑅))) |
| 55 | 7 | fveq2i 6825 | . . . . . 6 ⊢ (cls‘𝐽) = (cls‘(topGen‘ran (,))) |
| 56 | 55 | fveq1i 6823 | . . . . 5 ⊢ ((cls‘𝐽)‘ℚ) = ((cls‘(topGen‘ran (,)))‘ℚ) |
| 57 | qdensere 24655 | . . . . 5 ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ | |
| 58 | 56, 57 | eqtri 2752 | . . . 4 ⊢ ((cls‘𝐽)‘ℚ) = ℝ |
| 59 | 58 | a1i 11 | . . 3 ⊢ (𝜑 → ((cls‘𝐽)‘ℚ) = ℝ) |
| 60 | 11, 12, 14, 8, 15, 23, 24, 29, 32, 6, 33, 41, 42, 54, 59 | ucnextcn 24189 | . 2 ⊢ (𝜑 → ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)) ∈ (𝐽 Cn 𝐾)) |
| 61 | 10, 60 | eqeltrd 2828 | 1 ⊢ (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 × cxp 5617 ran crn 5620 ↾ cres 5621 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 0cc0 11009 ℚcq 12849 (,)cioo 13248 Basecbs 17120 ↾s cress 17141 distcds 17170 TopOpenctopn 17325 topGenctg 17341 DivRingcdr 20614 ∞Metcxmet 21246 MetOpencmopn 21251 metUnifcmetu 21252 ℂfldccnfld 21261 ℤModczlm 21407 chrcchr 21408 ℝfldcrefld 21511 TopSpctps 22817 clsccl 22903 Cn ccn 23109 Hauscha 23193 CnExtccnext 23944 UnifStcuss 24139 UnifSpcusp 24140 Cnucucn 24160 CUnifSpccusp 24182 ∞MetSpcxms 24203 MetSpcms 24204 NrmGrpcngp 24463 NrmRingcnrg 24465 NrmModcnlm 24466 CMetSpccms 25230 ℚHomcqqh 33937 ℝHomcrrh 33960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-numer 16646 df-denom 16647 df-gz 16842 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-cntz 19196 df-od 19407 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-rhm 20357 df-nzr 20398 df-subrng 20431 df-subrg 20455 df-drng 20616 df-abv 20694 df-lmod 20765 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-metu 21260 df-cnfld 21262 df-zring 21354 df-zrh 21410 df-zlm 21411 df-chr 21412 df-refld 21512 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-cn 23112 df-cnp 23113 df-haus 23200 df-reg 23201 df-cmp 23272 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-fcls 23826 df-cnext 23945 df-ust 24086 df-utop 24117 df-uss 24142 df-usp 24143 df-ucn 24161 df-cfilu 24172 df-cusp 24183 df-xms 24206 df-ms 24207 df-tms 24208 df-nm 24468 df-ngp 24469 df-nrg 24471 df-nlm 24472 df-cncf 24769 df-cfil 25153 df-cmet 25155 df-cms 25233 df-qqh 33938 df-rrh 33962 |
| This theorem is referenced by: rrhf 33965 rrhcne 33980 |
| Copyright terms: Public domain | W3C validator |