Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrhcn | Structured version Visualization version GIF version |
Description: If the topology of 𝑅 is Hausdorff, and 𝑅 is a complete uniform space, then the canonical homomorphism from the real numbers to 𝑅 is continuous. (Contributed by Thierry Arnoux, 17-Jan-2018.) |
Ref | Expression |
---|---|
rrhf.d | ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) |
rrhf.j | ⊢ 𝐽 = (topGen‘ran (,)) |
rrhf.b | ⊢ 𝐵 = (Base‘𝑅) |
rrhf.k | ⊢ 𝐾 = (TopOpen‘𝑅) |
rrhf.z | ⊢ 𝑍 = (ℤMod‘𝑅) |
rrhf.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
rrhf.2 | ⊢ (𝜑 → 𝑅 ∈ NrmRing) |
rrhf.3 | ⊢ (𝜑 → 𝑍 ∈ NrmMod) |
rrhf.4 | ⊢ (𝜑 → (chr‘𝑅) = 0) |
rrhf.5 | ⊢ (𝜑 → 𝑅 ∈ CUnifSp) |
rrhf.6 | ⊢ (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷)) |
Ref | Expression |
---|---|
rrhcn | ⊢ (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrhf.2 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ NrmRing) | |
2 | nrgngp 23826 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
3 | ngpxms 23757 | . . . . 5 ⊢ (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ∞MetSp) |
5 | xmstps 23606 | . . . 4 ⊢ (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ TopSp) |
7 | rrhf.j | . . . 4 ⊢ 𝐽 = (topGen‘ran (,)) | |
8 | rrhf.k | . . . 4 ⊢ 𝐾 = (TopOpen‘𝑅) | |
9 | 7, 8 | rrhval 31946 | . . 3 ⊢ (𝑅 ∈ TopSp → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
10 | 6, 9 | syl 17 | . 2 ⊢ (𝜑 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
11 | rebase 20811 | . . 3 ⊢ ℝ = (Base‘ℝfld) | |
12 | rrhf.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
13 | retopn 24543 | . . . 4 ⊢ (topGen‘ran (,)) = (TopOpen‘ℝfld) | |
14 | 7, 13 | eqtri 2766 | . . 3 ⊢ 𝐽 = (TopOpen‘ℝfld) |
15 | eqid 2738 | . . 3 ⊢ (UnifSt‘ℝfld) = (UnifSt‘ℝfld) | |
16 | df-refld 20810 | . . . . . 6 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
17 | 16 | oveq1i 7285 | . . . . 5 ⊢ (ℝfld ↾s ℚ) = ((ℂfld ↾s ℝ) ↾s ℚ) |
18 | reex 10962 | . . . . . 6 ⊢ ℝ ∈ V | |
19 | qssre 12699 | . . . . . 6 ⊢ ℚ ⊆ ℝ | |
20 | ressabs 16959 | . . . . . 6 ⊢ ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → ((ℂfld ↾s ℝ) ↾s ℚ) = (ℂfld ↾s ℚ)) | |
21 | 18, 19, 20 | mp2an 689 | . . . . 5 ⊢ ((ℂfld ↾s ℝ) ↾s ℚ) = (ℂfld ↾s ℚ) |
22 | 17, 21 | eqtr2i 2767 | . . . 4 ⊢ (ℂfld ↾s ℚ) = (ℝfld ↾s ℚ) |
23 | 22 | fveq2i 6777 | . . 3 ⊢ (UnifSt‘(ℂfld ↾s ℚ)) = (UnifSt‘(ℝfld ↾s ℚ)) |
24 | eqid 2738 | . . 3 ⊢ (UnifSt‘𝑅) = (UnifSt‘𝑅) | |
25 | recms 24544 | . . . . 5 ⊢ ℝfld ∈ CMetSp | |
26 | cmsms 24512 | . . . . 5 ⊢ (ℝfld ∈ CMetSp → ℝfld ∈ MetSp) | |
27 | mstps 23608 | . . . . 5 ⊢ (ℝfld ∈ MetSp → ℝfld ∈ TopSp) | |
28 | 25, 26, 27 | mp2b 10 | . . . 4 ⊢ ℝfld ∈ TopSp |
29 | 28 | a1i 11 | . . 3 ⊢ (𝜑 → ℝfld ∈ TopSp) |
30 | recusp 24546 | . . . 4 ⊢ ℝfld ∈ CUnifSp | |
31 | cuspusp 23452 | . . . 4 ⊢ (ℝfld ∈ CUnifSp → ℝfld ∈ UnifSp) | |
32 | 30, 31 | mp1i 13 | . . 3 ⊢ (𝜑 → ℝfld ∈ UnifSp) |
33 | rrhf.5 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CUnifSp) | |
34 | rrhf.d | . . . . . 6 ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) | |
35 | 8, 12, 34 | xmstopn 23604 | . . . . 5 ⊢ (𝑅 ∈ ∞MetSp → 𝐾 = (MetOpen‘𝐷)) |
36 | 4, 35 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 = (MetOpen‘𝐷)) |
37 | 12, 34 | xmsxmet 23609 | . . . . 5 ⊢ (𝑅 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝐵)) |
38 | eqid 2738 | . . . . . 6 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
39 | 38 | methaus 23676 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ Haus) |
40 | 4, 37, 39 | 3syl 18 | . . . 4 ⊢ (𝜑 → (MetOpen‘𝐷) ∈ Haus) |
41 | 36, 40 | eqeltrd 2839 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Haus) |
42 | 19 | a1i 11 | . . 3 ⊢ (𝜑 → ℚ ⊆ ℝ) |
43 | eqid 2738 | . . . . 5 ⊢ (ℂfld ↾s ℚ) = (ℂfld ↾s ℚ) | |
44 | eqid 2738 | . . . . 5 ⊢ (UnifSt‘(ℂfld ↾s ℚ)) = (UnifSt‘(ℂfld ↾s ℚ)) | |
45 | 34 | fveq2i 6777 | . . . . 5 ⊢ (metUnif‘𝐷) = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵))) |
46 | rrhf.z | . . . . 5 ⊢ 𝑍 = (ℤMod‘𝑅) | |
47 | rrhf.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
48 | rrhf.3 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ NrmMod) | |
49 | rrhf.4 | . . . . 5 ⊢ (𝜑 → (chr‘𝑅) = 0) | |
50 | 12, 43, 44, 45, 46, 1, 47, 48, 49 | qqhucn 31942 | . . . 4 ⊢ (𝜑 → (ℚHom‘𝑅) ∈ ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(metUnif‘𝐷))) |
51 | rrhf.6 | . . . . . 6 ⊢ (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷)) | |
52 | 51 | eqcomd 2744 | . . . . 5 ⊢ (𝜑 → (metUnif‘𝐷) = (UnifSt‘𝑅)) |
53 | 52 | oveq2d 7291 | . . . 4 ⊢ (𝜑 → ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(metUnif‘𝐷)) = ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(UnifSt‘𝑅))) |
54 | 50, 53 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → (ℚHom‘𝑅) ∈ ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(UnifSt‘𝑅))) |
55 | 7 | fveq2i 6777 | . . . . . 6 ⊢ (cls‘𝐽) = (cls‘(topGen‘ran (,))) |
56 | 55 | fveq1i 6775 | . . . . 5 ⊢ ((cls‘𝐽)‘ℚ) = ((cls‘(topGen‘ran (,)))‘ℚ) |
57 | qdensere 23933 | . . . . 5 ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ | |
58 | 56, 57 | eqtri 2766 | . . . 4 ⊢ ((cls‘𝐽)‘ℚ) = ℝ |
59 | 58 | a1i 11 | . . 3 ⊢ (𝜑 → ((cls‘𝐽)‘ℚ) = ℝ) |
60 | 11, 12, 14, 8, 15, 23, 24, 29, 32, 6, 33, 41, 42, 54, 59 | ucnextcn 23456 | . 2 ⊢ (𝜑 → ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)) ∈ (𝐽 Cn 𝐾)) |
61 | 10, 60 | eqeltrd 2839 | 1 ⊢ (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 × cxp 5587 ran crn 5590 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 ℚcq 12688 (,)cioo 13079 Basecbs 16912 ↾s cress 16941 distcds 16971 TopOpenctopn 17132 topGenctg 17148 DivRingcdr 19991 ∞Metcxmet 20582 MetOpencmopn 20587 metUnifcmetu 20588 ℂfldccnfld 20597 ℤModczlm 20702 chrcchr 20703 ℝfldcrefld 20809 TopSpctps 22081 clsccl 22169 Cn ccn 22375 Hauscha 22459 CnExtccnext 23210 UnifStcuss 23405 UnifSpcusp 23406 Cnucucn 23427 CUnifSpccusp 23449 ∞MetSpcxms 23470 MetSpcms 23471 NrmGrpcngp 23733 NrmRingcnrg 23735 NrmModcnlm 23736 CMetSpccms 24496 ℚHomcqqh 31922 ℝHomcrrh 31943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-gcd 16202 df-numer 16439 df-denom 16440 df-gz 16631 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cntz 18923 df-od 19136 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-rnghom 19959 df-drng 19993 df-subrg 20022 df-abv 20077 df-lmod 20125 df-nzr 20529 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-metu 20596 df-cnfld 20598 df-zring 20671 df-zrh 20705 df-zlm 20706 df-chr 20707 df-refld 20810 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-cn 22378 df-cnp 22379 df-haus 22466 df-reg 22467 df-cmp 22538 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-fcls 23092 df-cnext 23211 df-ust 23352 df-utop 23383 df-uss 23408 df-usp 23409 df-ucn 23428 df-cfilu 23439 df-cusp 23450 df-xms 23473 df-ms 23474 df-tms 23475 df-nm 23738 df-ngp 23739 df-nrg 23741 df-nlm 23742 df-cncf 24041 df-cfil 24419 df-cmet 24421 df-cms 24499 df-qqh 31923 df-rrh 31945 |
This theorem is referenced by: rrhf 31948 rrhcne 31963 |
Copyright terms: Public domain | W3C validator |