Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrhcn Structured version   Visualization version   GIF version

Theorem rrhcn 31295
 Description: If the topology of 𝑅 is Hausdorff, and 𝑅 is a complete uniform space, then the canonical homomorphism from the real numbers to 𝑅 is continuous. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypotheses
Ref Expression
rrhf.d 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
rrhf.j 𝐽 = (topGen‘ran (,))
rrhf.b 𝐵 = (Base‘𝑅)
rrhf.k 𝐾 = (TopOpen‘𝑅)
rrhf.z 𝑍 = (ℤMod‘𝑅)
rrhf.1 (𝜑𝑅 ∈ DivRing)
rrhf.2 (𝜑𝑅 ∈ NrmRing)
rrhf.3 (𝜑𝑍 ∈ NrmMod)
rrhf.4 (𝜑 → (chr‘𝑅) = 0)
rrhf.5 (𝜑𝑅 ∈ CUnifSp)
rrhf.6 (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷))
Assertion
Ref Expression
rrhcn (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾))

Proof of Theorem rrhcn
StepHypRef Expression
1 rrhf.2 . . . . 5 (𝜑𝑅 ∈ NrmRing)
2 nrgngp 23271 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
3 ngpxms 23210 . . . . 5 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
41, 2, 33syl 18 . . . 4 (𝜑𝑅 ∈ ∞MetSp)
5 xmstps 23063 . . . 4 (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp)
64, 5syl 17 . . 3 (𝜑𝑅 ∈ TopSp)
7 rrhf.j . . . 4 𝐽 = (topGen‘ran (,))
8 rrhf.k . . . 4 𝐾 = (TopOpen‘𝑅)
97, 8rrhval 31294 . . 3 (𝑅 ∈ TopSp → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))
106, 9syl 17 . 2 (𝜑 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))
11 rebase 20750 . . 3 ℝ = (Base‘ℝfld)
12 rrhf.b . . 3 𝐵 = (Base‘𝑅)
13 retopn 23986 . . . 4 (topGen‘ran (,)) = (TopOpen‘ℝfld)
147, 13eqtri 2847 . . 3 𝐽 = (TopOpen‘ℝfld)
15 eqid 2824 . . 3 (UnifSt‘ℝfld) = (UnifSt‘ℝfld)
16 df-refld 20749 . . . . . 6 fld = (ℂflds ℝ)
1716oveq1i 7159 . . . . 5 (ℝflds ℚ) = ((ℂflds ℝ) ↾s ℚ)
18 reex 10626 . . . . . 6 ℝ ∈ V
19 qssre 12355 . . . . . 6 ℚ ⊆ ℝ
20 ressabs 16563 . . . . . 6 ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → ((ℂflds ℝ) ↾s ℚ) = (ℂflds ℚ))
2118, 19, 20mp2an 691 . . . . 5 ((ℂflds ℝ) ↾s ℚ) = (ℂflds ℚ)
2217, 21eqtr2i 2848 . . . 4 (ℂflds ℚ) = (ℝflds ℚ)
2322fveq2i 6664 . . 3 (UnifSt‘(ℂflds ℚ)) = (UnifSt‘(ℝflds ℚ))
24 eqid 2824 . . 3 (UnifSt‘𝑅) = (UnifSt‘𝑅)
25 recms 23987 . . . . 5 fld ∈ CMetSp
26 cmsms 23955 . . . . 5 (ℝfld ∈ CMetSp → ℝfld ∈ MetSp)
27 mstps 23065 . . . . 5 (ℝfld ∈ MetSp → ℝfld ∈ TopSp)
2825, 26, 27mp2b 10 . . . 4 fld ∈ TopSp
2928a1i 11 . . 3 (𝜑 → ℝfld ∈ TopSp)
30 recusp 23989 . . . 4 fld ∈ CUnifSp
31 cuspusp 22909 . . . 4 (ℝfld ∈ CUnifSp → ℝfld ∈ UnifSp)
3230, 31mp1i 13 . . 3 (𝜑 → ℝfld ∈ UnifSp)
33 rrhf.5 . . 3 (𝜑𝑅 ∈ CUnifSp)
34 rrhf.d . . . . . 6 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
358, 12, 34xmstopn 23061 . . . . 5 (𝑅 ∈ ∞MetSp → 𝐾 = (MetOpen‘𝐷))
364, 35syl 17 . . . 4 (𝜑𝐾 = (MetOpen‘𝐷))
3712, 34xmsxmet 23066 . . . . 5 (𝑅 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝐵))
38 eqid 2824 . . . . . 6 (MetOpen‘𝐷) = (MetOpen‘𝐷)
3938methaus 23130 . . . . 5 (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ Haus)
404, 37, 393syl 18 . . . 4 (𝜑 → (MetOpen‘𝐷) ∈ Haus)
4136, 40eqeltrd 2916 . . 3 (𝜑𝐾 ∈ Haus)
4219a1i 11 . . 3 (𝜑 → ℚ ⊆ ℝ)
43 eqid 2824 . . . . 5 (ℂflds ℚ) = (ℂflds ℚ)
44 eqid 2824 . . . . 5 (UnifSt‘(ℂflds ℚ)) = (UnifSt‘(ℂflds ℚ))
4534fveq2i 6664 . . . . 5 (metUnif‘𝐷) = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵)))
46 rrhf.z . . . . 5 𝑍 = (ℤMod‘𝑅)
47 rrhf.1 . . . . 5 (𝜑𝑅 ∈ DivRing)
48 rrhf.3 . . . . 5 (𝜑𝑍 ∈ NrmMod)
49 rrhf.4 . . . . 5 (𝜑 → (chr‘𝑅) = 0)
5012, 43, 44, 45, 46, 1, 47, 48, 49qqhucn 31290 . . . 4 (𝜑 → (ℚHom‘𝑅) ∈ ((UnifSt‘(ℂflds ℚ)) Cnu(metUnif‘𝐷)))
51 rrhf.6 . . . . . 6 (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷))
5251eqcomd 2830 . . . . 5 (𝜑 → (metUnif‘𝐷) = (UnifSt‘𝑅))
5352oveq2d 7165 . . . 4 (𝜑 → ((UnifSt‘(ℂflds ℚ)) Cnu(metUnif‘𝐷)) = ((UnifSt‘(ℂflds ℚ)) Cnu(UnifSt‘𝑅)))
5450, 53eleqtrd 2918 . . 3 (𝜑 → (ℚHom‘𝑅) ∈ ((UnifSt‘(ℂflds ℚ)) Cnu(UnifSt‘𝑅)))
557fveq2i 6664 . . . . . 6 (cls‘𝐽) = (cls‘(topGen‘ran (,)))
5655fveq1i 6662 . . . . 5 ((cls‘𝐽)‘ℚ) = ((cls‘(topGen‘ran (,)))‘ℚ)
57 qdensere 23378 . . . . 5 ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ
5856, 57eqtri 2847 . . . 4 ((cls‘𝐽)‘ℚ) = ℝ
5958a1i 11 . . 3 (𝜑 → ((cls‘𝐽)‘ℚ) = ℝ)
6011, 12, 14, 8, 15, 23, 24, 29, 32, 6, 33, 41, 42, 54, 59ucnextcn 22913 . 2 (𝜑 → ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)) ∈ (𝐽 Cn 𝐾))
6110, 60eqeltrd 2916 1 (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2115  Vcvv 3480   ⊆ wss 3919   × cxp 5540  ran crn 5543   ↾ cres 5544  ‘cfv 6343  (class class class)co 7149  ℝcr 10534  0cc0 10535  ℚcq 12345  (,)cioo 12735  Basecbs 16483   ↾s cress 16484  distcds 16574  TopOpenctopn 16695  topGenctg 16711  DivRingcdr 19502  ∞Metcxmet 20530  MetOpencmopn 20535  metUnifcmetu 20536  ℂfldccnfld 20545  ℤModczlm 20648  chrcchr 20649  ℝfldcrefld 20748  TopSpctps 21540  clsccl 21626   Cn ccn 21832  Hauscha 21916  CnExtccnext 22667  UnifStcuss 22862  UnifSpcusp 22863   Cnucucn 22884  CUnifSpccusp 22906  ∞MetSpcxms 22927  MetSpcms 22928  NrmGrpcngp 23187  NrmRingcnrg 23189  NrmModcnlm 23190  CMetSpccms 23939  ℚHomcqqh 31270  ℝHomcrrh 31291 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-addf 10614  ax-mulf 10615 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-map 8404  df-pm 8405  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-fi 8872  df-sup 8903  df-inf 8904  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-xmul 12506  df-ioo 12739  df-ico 12741  df-icc 12742  df-fz 12895  df-fzo 13038  df-fl 13166  df-mod 13242  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-gcd 15842  df-numer 16073  df-denom 16074  df-gz 16264  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-od 18656  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-dvr 19436  df-rnghom 19470  df-drng 19504  df-subrg 19533  df-abv 19588  df-lmod 19636  df-nzr 20031  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-metu 20544  df-cnfld 20546  df-zring 20618  df-zrh 20651  df-zlm 20652  df-chr 20653  df-refld 20749  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-cn 21835  df-cnp 21836  df-haus 21923  df-reg 21924  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-fcls 22549  df-cnext 22668  df-ust 22809  df-utop 22840  df-uss 22865  df-usp 22866  df-ucn 22885  df-cfilu 22896  df-cusp 22907  df-xms 22930  df-ms 22931  df-tms 22932  df-nm 23192  df-ngp 23193  df-nrg 23195  df-nlm 23196  df-cncf 23486  df-cfil 23862  df-cmet 23864  df-cms 23942  df-qqh 31271  df-rrh 31293 This theorem is referenced by:  rrhf  31296  rrhcne  31311
 Copyright terms: Public domain W3C validator