![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrhcn | Structured version Visualization version GIF version |
Description: If the topology of 𝑅 is Hausdorff, and 𝑅 is a complete uniform space, then the canonical homomorphism from the real numbers to 𝑅 is continuous. (Contributed by Thierry Arnoux, 17-Jan-2018.) |
Ref | Expression |
---|---|
rrhf.d | ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) |
rrhf.j | ⊢ 𝐽 = (topGen‘ran (,)) |
rrhf.b | ⊢ 𝐵 = (Base‘𝑅) |
rrhf.k | ⊢ 𝐾 = (TopOpen‘𝑅) |
rrhf.z | ⊢ 𝑍 = (ℤMod‘𝑅) |
rrhf.1 | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
rrhf.2 | ⊢ (𝜑 → 𝑅 ∈ NrmRing) |
rrhf.3 | ⊢ (𝜑 → 𝑍 ∈ NrmMod) |
rrhf.4 | ⊢ (𝜑 → (chr‘𝑅) = 0) |
rrhf.5 | ⊢ (𝜑 → 𝑅 ∈ CUnifSp) |
rrhf.6 | ⊢ (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷)) |
Ref | Expression |
---|---|
rrhcn | ⊢ (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrhf.2 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ NrmRing) | |
2 | nrgngp 24699 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
3 | ngpxms 24630 | . . . . 5 ⊢ (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ∞MetSp) |
5 | xmstps 24479 | . . . 4 ⊢ (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ TopSp) |
7 | rrhf.j | . . . 4 ⊢ 𝐽 = (topGen‘ran (,)) | |
8 | rrhf.k | . . . 4 ⊢ 𝐾 = (TopOpen‘𝑅) | |
9 | 7, 8 | rrhval 33959 | . . 3 ⊢ (𝑅 ∈ TopSp → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
10 | 6, 9 | syl 17 | . 2 ⊢ (𝜑 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) |
11 | rebase 21642 | . . 3 ⊢ ℝ = (Base‘ℝfld) | |
12 | rrhf.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
13 | retopn 25427 | . . . 4 ⊢ (topGen‘ran (,)) = (TopOpen‘ℝfld) | |
14 | 7, 13 | eqtri 2763 | . . 3 ⊢ 𝐽 = (TopOpen‘ℝfld) |
15 | eqid 2735 | . . 3 ⊢ (UnifSt‘ℝfld) = (UnifSt‘ℝfld) | |
16 | df-refld 21641 | . . . . . 6 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
17 | 16 | oveq1i 7441 | . . . . 5 ⊢ (ℝfld ↾s ℚ) = ((ℂfld ↾s ℝ) ↾s ℚ) |
18 | reex 11244 | . . . . . 6 ⊢ ℝ ∈ V | |
19 | qssre 12999 | . . . . . 6 ⊢ ℚ ⊆ ℝ | |
20 | ressabs 17295 | . . . . . 6 ⊢ ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → ((ℂfld ↾s ℝ) ↾s ℚ) = (ℂfld ↾s ℚ)) | |
21 | 18, 19, 20 | mp2an 692 | . . . . 5 ⊢ ((ℂfld ↾s ℝ) ↾s ℚ) = (ℂfld ↾s ℚ) |
22 | 17, 21 | eqtr2i 2764 | . . . 4 ⊢ (ℂfld ↾s ℚ) = (ℝfld ↾s ℚ) |
23 | 22 | fveq2i 6910 | . . 3 ⊢ (UnifSt‘(ℂfld ↾s ℚ)) = (UnifSt‘(ℝfld ↾s ℚ)) |
24 | eqid 2735 | . . 3 ⊢ (UnifSt‘𝑅) = (UnifSt‘𝑅) | |
25 | recms 25428 | . . . . 5 ⊢ ℝfld ∈ CMetSp | |
26 | cmsms 25396 | . . . . 5 ⊢ (ℝfld ∈ CMetSp → ℝfld ∈ MetSp) | |
27 | mstps 24481 | . . . . 5 ⊢ (ℝfld ∈ MetSp → ℝfld ∈ TopSp) | |
28 | 25, 26, 27 | mp2b 10 | . . . 4 ⊢ ℝfld ∈ TopSp |
29 | 28 | a1i 11 | . . 3 ⊢ (𝜑 → ℝfld ∈ TopSp) |
30 | recusp 25430 | . . . 4 ⊢ ℝfld ∈ CUnifSp | |
31 | cuspusp 24325 | . . . 4 ⊢ (ℝfld ∈ CUnifSp → ℝfld ∈ UnifSp) | |
32 | 30, 31 | mp1i 13 | . . 3 ⊢ (𝜑 → ℝfld ∈ UnifSp) |
33 | rrhf.5 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CUnifSp) | |
34 | rrhf.d | . . . . . 6 ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) | |
35 | 8, 12, 34 | xmstopn 24477 | . . . . 5 ⊢ (𝑅 ∈ ∞MetSp → 𝐾 = (MetOpen‘𝐷)) |
36 | 4, 35 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 = (MetOpen‘𝐷)) |
37 | 12, 34 | xmsxmet 24482 | . . . . 5 ⊢ (𝑅 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝐵)) |
38 | eqid 2735 | . . . . . 6 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
39 | 38 | methaus 24549 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ Haus) |
40 | 4, 37, 39 | 3syl 18 | . . . 4 ⊢ (𝜑 → (MetOpen‘𝐷) ∈ Haus) |
41 | 36, 40 | eqeltrd 2839 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Haus) |
42 | 19 | a1i 11 | . . 3 ⊢ (𝜑 → ℚ ⊆ ℝ) |
43 | eqid 2735 | . . . . 5 ⊢ (ℂfld ↾s ℚ) = (ℂfld ↾s ℚ) | |
44 | eqid 2735 | . . . . 5 ⊢ (UnifSt‘(ℂfld ↾s ℚ)) = (UnifSt‘(ℂfld ↾s ℚ)) | |
45 | 34 | fveq2i 6910 | . . . . 5 ⊢ (metUnif‘𝐷) = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵))) |
46 | rrhf.z | . . . . 5 ⊢ 𝑍 = (ℤMod‘𝑅) | |
47 | rrhf.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
48 | rrhf.3 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ NrmMod) | |
49 | rrhf.4 | . . . . 5 ⊢ (𝜑 → (chr‘𝑅) = 0) | |
50 | 12, 43, 44, 45, 46, 1, 47, 48, 49 | qqhucn 33955 | . . . 4 ⊢ (𝜑 → (ℚHom‘𝑅) ∈ ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(metUnif‘𝐷))) |
51 | rrhf.6 | . . . . . 6 ⊢ (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷)) | |
52 | 51 | eqcomd 2741 | . . . . 5 ⊢ (𝜑 → (metUnif‘𝐷) = (UnifSt‘𝑅)) |
53 | 52 | oveq2d 7447 | . . . 4 ⊢ (𝜑 → ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(metUnif‘𝐷)) = ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(UnifSt‘𝑅))) |
54 | 50, 53 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → (ℚHom‘𝑅) ∈ ((UnifSt‘(ℂfld ↾s ℚ)) Cnu(UnifSt‘𝑅))) |
55 | 7 | fveq2i 6910 | . . . . . 6 ⊢ (cls‘𝐽) = (cls‘(topGen‘ran (,))) |
56 | 55 | fveq1i 6908 | . . . . 5 ⊢ ((cls‘𝐽)‘ℚ) = ((cls‘(topGen‘ran (,)))‘ℚ) |
57 | qdensere 24806 | . . . . 5 ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ | |
58 | 56, 57 | eqtri 2763 | . . . 4 ⊢ ((cls‘𝐽)‘ℚ) = ℝ |
59 | 58 | a1i 11 | . . 3 ⊢ (𝜑 → ((cls‘𝐽)‘ℚ) = ℝ) |
60 | 11, 12, 14, 8, 15, 23, 24, 29, 32, 6, 33, 41, 42, 54, 59 | ucnextcn 24329 | . 2 ⊢ (𝜑 → ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)) ∈ (𝐽 Cn 𝐾)) |
61 | 10, 60 | eqeltrd 2839 | 1 ⊢ (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 × cxp 5687 ran crn 5690 ↾ cres 5691 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 0cc0 11153 ℚcq 12988 (,)cioo 13384 Basecbs 17245 ↾s cress 17274 distcds 17307 TopOpenctopn 17468 topGenctg 17484 DivRingcdr 20746 ∞Metcxmet 21367 MetOpencmopn 21372 metUnifcmetu 21373 ℂfldccnfld 21382 ℤModczlm 21529 chrcchr 21530 ℝfldcrefld 21640 TopSpctps 22954 clsccl 23042 Cn ccn 23248 Hauscha 23332 CnExtccnext 24083 UnifStcuss 24278 UnifSpcusp 24279 Cnucucn 24300 CUnifSpccusp 24322 ∞MetSpcxms 24343 MetSpcms 24344 NrmGrpcngp 24606 NrmRingcnrg 24608 NrmModcnlm 24609 CMetSpccms 25380 ℚHomcqqh 33933 ℝHomcrrh 33956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-gcd 16529 df-numer 16769 df-denom 16770 df-gz 16964 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cntz 19348 df-od 19561 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-rhm 20489 df-nzr 20530 df-subrng 20563 df-subrg 20587 df-drng 20748 df-abv 20827 df-lmod 20877 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-metu 21381 df-cnfld 21383 df-zring 21476 df-zrh 21532 df-zlm 21533 df-chr 21534 df-refld 21641 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-cn 23251 df-cnp 23252 df-haus 23339 df-reg 23340 df-cmp 23411 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-fcls 23965 df-cnext 24084 df-ust 24225 df-utop 24256 df-uss 24281 df-usp 24282 df-ucn 24301 df-cfilu 24312 df-cusp 24323 df-xms 24346 df-ms 24347 df-tms 24348 df-nm 24611 df-ngp 24612 df-nrg 24614 df-nlm 24615 df-cncf 24918 df-cfil 25303 df-cmet 25305 df-cms 25383 df-qqh 33934 df-rrh 33958 |
This theorem is referenced by: rrhf 33961 rrhcne 33976 |
Copyright terms: Public domain | W3C validator |