Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrhcn Structured version   Visualization version   GIF version

Theorem rrhcn 30639
Description: If the topology of 𝑅 is Hausdorff, and 𝑅 is a complete uniform space, then the canonical homomorphism from the real numbers to 𝑅 is continuous. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypotheses
Ref Expression
rrhf.d 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
rrhf.j 𝐽 = (topGen‘ran (,))
rrhf.b 𝐵 = (Base‘𝑅)
rrhf.k 𝐾 = (TopOpen‘𝑅)
rrhf.z 𝑍 = (ℤMod‘𝑅)
rrhf.1 (𝜑𝑅 ∈ DivRing)
rrhf.2 (𝜑𝑅 ∈ NrmRing)
rrhf.3 (𝜑𝑍 ∈ NrmMod)
rrhf.4 (𝜑 → (chr‘𝑅) = 0)
rrhf.5 (𝜑𝑅 ∈ CUnifSp)
rrhf.6 (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷))
Assertion
Ref Expression
rrhcn (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾))

Proof of Theorem rrhcn
StepHypRef Expression
1 rrhf.2 . . . . 5 (𝜑𝑅 ∈ NrmRing)
2 nrgngp 22874 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
3 ngpxms 22813 . . . . 5 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
41, 2, 33syl 18 . . . 4 (𝜑𝑅 ∈ ∞MetSp)
5 xmstps 22666 . . . 4 (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp)
64, 5syl 17 . . 3 (𝜑𝑅 ∈ TopSp)
7 rrhf.j . . . 4 𝐽 = (topGen‘ran (,))
8 rrhf.k . . . 4 𝐾 = (TopOpen‘𝑅)
97, 8rrhval 30638 . . 3 (𝑅 ∈ TopSp → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))
106, 9syl 17 . 2 (𝜑 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)))
11 rebase 20349 . . 3 ℝ = (Base‘ℝfld)
12 rrhf.b . . 3 𝐵 = (Base‘𝑅)
13 retopn 23585 . . . 4 (topGen‘ran (,)) = (TopOpen‘ℝfld)
147, 13eqtri 2801 . . 3 𝐽 = (TopOpen‘ℝfld)
15 eqid 2777 . . 3 (UnifSt‘ℝfld) = (UnifSt‘ℝfld)
16 df-refld 20348 . . . . . 6 fld = (ℂflds ℝ)
1716oveq1i 6932 . . . . 5 (ℝflds ℚ) = ((ℂflds ℝ) ↾s ℚ)
18 reex 10363 . . . . . 6 ℝ ∈ V
19 qssre 12106 . . . . . 6 ℚ ⊆ ℝ
20 ressabs 16336 . . . . . 6 ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → ((ℂflds ℝ) ↾s ℚ) = (ℂflds ℚ))
2118, 19, 20mp2an 682 . . . . 5 ((ℂflds ℝ) ↾s ℚ) = (ℂflds ℚ)
2217, 21eqtr2i 2802 . . . 4 (ℂflds ℚ) = (ℝflds ℚ)
2322fveq2i 6449 . . 3 (UnifSt‘(ℂflds ℚ)) = (UnifSt‘(ℝflds ℚ))
24 eqid 2777 . . 3 (UnifSt‘𝑅) = (UnifSt‘𝑅)
25 recms 23586 . . . . 5 fld ∈ CMetSp
26 cmsms 23554 . . . . 5 (ℝfld ∈ CMetSp → ℝfld ∈ MetSp)
27 mstps 22668 . . . . 5 (ℝfld ∈ MetSp → ℝfld ∈ TopSp)
2825, 26, 27mp2b 10 . . . 4 fld ∈ TopSp
2928a1i 11 . . 3 (𝜑 → ℝfld ∈ TopSp)
30 recusp 23588 . . . 4 fld ∈ CUnifSp
31 cuspusp 22512 . . . 4 (ℝfld ∈ CUnifSp → ℝfld ∈ UnifSp)
3230, 31mp1i 13 . . 3 (𝜑 → ℝfld ∈ UnifSp)
33 rrhf.5 . . 3 (𝜑𝑅 ∈ CUnifSp)
34 rrhf.d . . . . . 6 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
358, 12, 34xmstopn 22664 . . . . 5 (𝑅 ∈ ∞MetSp → 𝐾 = (MetOpen‘𝐷))
364, 35syl 17 . . . 4 (𝜑𝐾 = (MetOpen‘𝐷))
3712, 34xmsxmet 22669 . . . . 5 (𝑅 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝐵))
38 eqid 2777 . . . . . 6 (MetOpen‘𝐷) = (MetOpen‘𝐷)
3938methaus 22733 . . . . 5 (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ Haus)
404, 37, 393syl 18 . . . 4 (𝜑 → (MetOpen‘𝐷) ∈ Haus)
4136, 40eqeltrd 2858 . . 3 (𝜑𝐾 ∈ Haus)
4219a1i 11 . . 3 (𝜑 → ℚ ⊆ ℝ)
43 eqid 2777 . . . . 5 (ℂflds ℚ) = (ℂflds ℚ)
44 eqid 2777 . . . . 5 (UnifSt‘(ℂflds ℚ)) = (UnifSt‘(ℂflds ℚ))
4534fveq2i 6449 . . . . 5 (metUnif‘𝐷) = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵)))
46 rrhf.z . . . . 5 𝑍 = (ℤMod‘𝑅)
47 rrhf.1 . . . . 5 (𝜑𝑅 ∈ DivRing)
48 rrhf.3 . . . . 5 (𝜑𝑍 ∈ NrmMod)
49 rrhf.4 . . . . 5 (𝜑 → (chr‘𝑅) = 0)
5012, 43, 44, 45, 46, 1, 47, 48, 49qqhucn 30634 . . . 4 (𝜑 → (ℚHom‘𝑅) ∈ ((UnifSt‘(ℂflds ℚ)) Cnu(metUnif‘𝐷)))
51 rrhf.6 . . . . . 6 (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷))
5251eqcomd 2783 . . . . 5 (𝜑 → (metUnif‘𝐷) = (UnifSt‘𝑅))
5352oveq2d 6938 . . . 4 (𝜑 → ((UnifSt‘(ℂflds ℚ)) Cnu(metUnif‘𝐷)) = ((UnifSt‘(ℂflds ℚ)) Cnu(UnifSt‘𝑅)))
5450, 53eleqtrd 2860 . . 3 (𝜑 → (ℚHom‘𝑅) ∈ ((UnifSt‘(ℂflds ℚ)) Cnu(UnifSt‘𝑅)))
557fveq2i 6449 . . . . . 6 (cls‘𝐽) = (cls‘(topGen‘ran (,)))
5655fveq1i 6447 . . . . 5 ((cls‘𝐽)‘ℚ) = ((cls‘(topGen‘ran (,)))‘ℚ)
57 qdensere 22981 . . . . 5 ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ
5856, 57eqtri 2801 . . . 4 ((cls‘𝐽)‘ℚ) = ℝ
5958a1i 11 . . 3 (𝜑 → ((cls‘𝐽)‘ℚ) = ℝ)
6011, 12, 14, 8, 15, 23, 24, 29, 32, 6, 33, 41, 42, 54, 59ucnextcn 22516 . 2 (𝜑 → ((𝐽CnExt𝐾)‘(ℚHom‘𝑅)) ∈ (𝐽 Cn 𝐾))
6110, 60eqeltrd 2858 1 (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2106  Vcvv 3397  wss 3791   × cxp 5353  ran crn 5356  cres 5357  cfv 6135  (class class class)co 6922  cr 10271  0cc0 10272  cq 12095  (,)cioo 12487  Basecbs 16255  s cress 16256  distcds 16347  TopOpenctopn 16468  topGenctg 16484  DivRingcdr 19139  ∞Metcxmet 20127  MetOpencmopn 20132  metUnifcmetu 20133  fldccnfld 20142  ℤModczlm 20245  chrcchr 20246  fldcrefld 20347  TopSpctps 21144  clsccl 21230   Cn ccn 21436  Hauscha 21520  CnExtccnext 22271  UnifStcuss 22465  UnifSpcusp 22466   Cnucucn 22487  CUnifSpccusp 22509  ∞MetSpcxms 22530  MetSpcms 22531  NrmGrpcngp 22790  NrmRingcnrg 22792  NrmModcnlm 22793  CMetSpccms 23538  ℚHomcqqh 30614  ℝHomcrrh 30635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-dvds 15388  df-gcd 15623  df-numer 15847  df-denom 15848  df-gz 16038  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-submnd 17722  df-grp 17812  df-minusg 17813  df-sbg 17814  df-mulg 17928  df-subg 17975  df-ghm 18042  df-cntz 18133  df-od 18332  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-dvr 19070  df-rnghom 19104  df-drng 19141  df-subrg 19170  df-abv 19209  df-lmod 19257  df-nzr 19655  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-metu 20141  df-cnfld 20143  df-zring 20215  df-zrh 20248  df-zlm 20249  df-chr 20250  df-refld 20348  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-cn 21439  df-cnp 21440  df-haus 21527  df-reg 21528  df-cmp 21599  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-fcls 22153  df-cnext 22272  df-ust 22412  df-utop 22443  df-uss 22468  df-usp 22469  df-ucn 22488  df-cfilu 22499  df-cusp 22510  df-xms 22533  df-ms 22534  df-tms 22535  df-nm 22795  df-ngp 22796  df-nrg 22798  df-nlm 22799  df-cncf 23089  df-cfil 23461  df-cmet 23463  df-cms 23541  df-qqh 30615  df-rrh 30637
This theorem is referenced by:  rrhf  30640  rrhcne  30655
  Copyright terms: Public domain W3C validator