MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cuspcvg Structured version   Visualization version   GIF version

Theorem cuspcvg 24216
Description: In a complete uniform space, any Cauchy filter 𝐶 has a limit. (Contributed by Thierry Arnoux, 3-Dec-2017.)
Hypotheses
Ref Expression
cuspcvg.1 𝐵 = (Base‘𝑊)
cuspcvg.2 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
cuspcvg ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐽 fLim 𝐶) ≠ ∅)

Proof of Theorem cuspcvg
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2821 . . . . 5 (𝑐 = 𝐶 → (𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) ↔ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊))))
2 cuspcvg.2 . . . . . . . . 9 𝐽 = (TopOpen‘𝑊)
32eqcomi 2742 . . . . . . . 8 (TopOpen‘𝑊) = 𝐽
43a1i 11 . . . . . . 7 (𝑐 = 𝐶 → (TopOpen‘𝑊) = 𝐽)
5 id 22 . . . . . . 7 (𝑐 = 𝐶𝑐 = 𝐶)
64, 5oveq12d 7370 . . . . . 6 (𝑐 = 𝐶 → ((TopOpen‘𝑊) fLim 𝑐) = (𝐽 fLim 𝐶))
76neeq1d 2988 . . . . 5 (𝑐 = 𝐶 → (((TopOpen‘𝑊) fLim 𝑐) ≠ ∅ ↔ (𝐽 fLim 𝐶) ≠ ∅))
81, 7imbi12d 344 . . . 4 (𝑐 = 𝐶 → ((𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅) ↔ (𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) → (𝐽 fLim 𝐶) ≠ ∅)))
9 iscusp 24214 . . . . . 6 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
109simprbi 496 . . . . 5 (𝑊 ∈ CUnifSp → ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))
1110adantr 480 . . . 4 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))
12 simpr 484 . . . . 5 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → 𝐶 ∈ (Fil‘𝐵))
13 cuspcvg.1 . . . . . 6 𝐵 = (Base‘𝑊)
1413fveq2i 6831 . . . . 5 (Fil‘𝐵) = (Fil‘(Base‘𝑊))
1512, 14eleqtrdi 2843 . . . 4 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → 𝐶 ∈ (Fil‘(Base‘𝑊)))
168, 11, 15rspcdva 3574 . . 3 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) → (𝐽 fLim 𝐶) ≠ ∅))
17163impia 1117 . 2 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵) ∧ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊))) → (𝐽 fLim 𝐶) ≠ ∅)
18173com23 1126 1 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐽 fLim 𝐶) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  c0 4282  cfv 6486  (class class class)co 7352  Basecbs 17122  TopOpenctopn 17327  Filcfil 23761   fLim cflim 23850  UnifStcuss 24169  UnifSpcusp 24170  CauFiluccfilu 24201  CUnifSpccusp 24212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355  df-cusp 24213
This theorem is referenced by:  cnextucn  24218
  Copyright terms: Public domain W3C validator