MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cuspcvg Structured version   Visualization version   GIF version

Theorem cuspcvg 24216
Description: In a complete uniform space, any Cauchy filter 𝐶 has a limit. (Contributed by Thierry Arnoux, 3-Dec-2017.)
Hypotheses
Ref Expression
cuspcvg.1 𝐵 = (Base‘𝑊)
cuspcvg.2 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
cuspcvg ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐽 fLim 𝐶) ≠ ∅)

Proof of Theorem cuspcvg
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2819 . . . . 5 (𝑐 = 𝐶 → (𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) ↔ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊))))
2 cuspcvg.2 . . . . . . . . 9 𝐽 = (TopOpen‘𝑊)
32eqcomi 2740 . . . . . . . 8 (TopOpen‘𝑊) = 𝐽
43a1i 11 . . . . . . 7 (𝑐 = 𝐶 → (TopOpen‘𝑊) = 𝐽)
5 id 22 . . . . . . 7 (𝑐 = 𝐶𝑐 = 𝐶)
64, 5oveq12d 7364 . . . . . 6 (𝑐 = 𝐶 → ((TopOpen‘𝑊) fLim 𝑐) = (𝐽 fLim 𝐶))
76neeq1d 2987 . . . . 5 (𝑐 = 𝐶 → (((TopOpen‘𝑊) fLim 𝑐) ≠ ∅ ↔ (𝐽 fLim 𝐶) ≠ ∅))
81, 7imbi12d 344 . . . 4 (𝑐 = 𝐶 → ((𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅) ↔ (𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) → (𝐽 fLim 𝐶) ≠ ∅)))
9 iscusp 24214 . . . . . 6 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
109simprbi 496 . . . . 5 (𝑊 ∈ CUnifSp → ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))
1110adantr 480 . . . 4 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))
12 simpr 484 . . . . 5 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → 𝐶 ∈ (Fil‘𝐵))
13 cuspcvg.1 . . . . . 6 𝐵 = (Base‘𝑊)
1413fveq2i 6825 . . . . 5 (Fil‘𝐵) = (Fil‘(Base‘𝑊))
1512, 14eleqtrdi 2841 . . . 4 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → 𝐶 ∈ (Fil‘(Base‘𝑊)))
168, 11, 15rspcdva 3578 . . 3 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) → (𝐽 fLim 𝐶) ≠ ∅))
17163impia 1117 . 2 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵) ∧ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊))) → (𝐽 fLim 𝐶) ≠ ∅)
18173com23 1126 1 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐽 fLim 𝐶) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  c0 4283  cfv 6481  (class class class)co 7346  Basecbs 17120  TopOpenctopn 17325  Filcfil 23761   fLim cflim 23850  UnifStcuss 24169  UnifSpcusp 24170  CauFiluccfilu 24201  CUnifSpccusp 24212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-cusp 24213
This theorem is referenced by:  cnextucn  24218
  Copyright terms: Public domain W3C validator