Step | Hyp | Ref
| Expression |
1 | | eleq1 2826 |
. . . . 5
⊢ (𝑐 = 𝐶 → (𝑐 ∈
(CauFilu‘(UnifSt‘𝑊)) ↔ 𝐶 ∈
(CauFilu‘(UnifSt‘𝑊)))) |
2 | | cuspcvg.2 |
. . . . . . . . 9
⊢ 𝐽 = (TopOpen‘𝑊) |
3 | 2 | eqcomi 2747 |
. . . . . . . 8
⊢
(TopOpen‘𝑊) =
𝐽 |
4 | 3 | a1i 11 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (TopOpen‘𝑊) = 𝐽) |
5 | | id 22 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → 𝑐 = 𝐶) |
6 | 4, 5 | oveq12d 7273 |
. . . . . 6
⊢ (𝑐 = 𝐶 → ((TopOpen‘𝑊) fLim 𝑐) = (𝐽 fLim 𝐶)) |
7 | 6 | neeq1d 3002 |
. . . . 5
⊢ (𝑐 = 𝐶 → (((TopOpen‘𝑊) fLim 𝑐) ≠ ∅ ↔ (𝐽 fLim 𝐶) ≠ ∅)) |
8 | 1, 7 | imbi12d 344 |
. . . 4
⊢ (𝑐 = 𝐶 → ((𝑐 ∈
(CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅) ↔ (𝐶 ∈
(CauFilu‘(UnifSt‘𝑊)) → (𝐽 fLim 𝐶) ≠ ∅))) |
9 | | iscusp 23359 |
. . . . . 6
⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧
∀𝑐 ∈
(Fil‘(Base‘𝑊))(𝑐 ∈
(CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
10 | 9 | simprbi 496 |
. . . . 5
⊢ (𝑊 ∈ CUnifSp →
∀𝑐 ∈
(Fil‘(Base‘𝑊))(𝑐 ∈
(CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)) |
11 | 10 | adantr 480 |
. . . 4
⊢ ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → ∀𝑐 ∈
(Fil‘(Base‘𝑊))(𝑐 ∈
(CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)) |
12 | | simpr 484 |
. . . . 5
⊢ ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → 𝐶 ∈ (Fil‘𝐵)) |
13 | | cuspcvg.1 |
. . . . . 6
⊢ 𝐵 = (Base‘𝑊) |
14 | 13 | fveq2i 6759 |
. . . . 5
⊢
(Fil‘𝐵) =
(Fil‘(Base‘𝑊)) |
15 | 12, 14 | eleqtrdi 2849 |
. . . 4
⊢ ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → 𝐶 ∈ (Fil‘(Base‘𝑊))) |
16 | 8, 11, 15 | rspcdva 3554 |
. . 3
⊢ ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐶 ∈
(CauFilu‘(UnifSt‘𝑊)) → (𝐽 fLim 𝐶) ≠ ∅)) |
17 | 16 | 3impia 1115 |
. 2
⊢ ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵) ∧ 𝐶 ∈
(CauFilu‘(UnifSt‘𝑊))) → (𝐽 fLim 𝐶) ≠ ∅) |
18 | 17 | 3com23 1124 |
1
⊢ ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈
(CauFilu‘(UnifSt‘𝑊)) ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐽 fLim 𝐶) ≠ ∅) |