MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnextcn Structured version   Visualization version   GIF version

Theorem ucnextcn 24242
Description: Extension by continuity. Theorem 2 of [BourbakiTop1] p. II.20. Given an uniform space on a set 𝑋, a subset 𝐴 dense in 𝑋, and a function 𝐹 uniformly continuous from 𝐴 to 𝑌, that function can be extended by continuity to the whole 𝑋, and its extension is uniformly continuous. (Contributed by Thierry Arnoux, 25-Jan-2018.)
Hypotheses
Ref Expression
ucnextcn.x 𝑋 = (Base‘𝑉)
ucnextcn.y 𝑌 = (Base‘𝑊)
ucnextcn.j 𝐽 = (TopOpen‘𝑉)
ucnextcn.k 𝐾 = (TopOpen‘𝑊)
ucnextcn.s 𝑆 = (UnifSt‘𝑉)
ucnextcn.t 𝑇 = (UnifSt‘(𝑉s 𝐴))
ucnextcn.u 𝑈 = (UnifSt‘𝑊)
ucnextcn.v (𝜑𝑉 ∈ TopSp)
ucnextcn.r (𝜑𝑉 ∈ UnifSp)
ucnextcn.w (𝜑𝑊 ∈ TopSp)
ucnextcn.z (𝜑𝑊 ∈ CUnifSp)
ucnextcn.h (𝜑𝐾 ∈ Haus)
ucnextcn.a (𝜑𝐴𝑋)
ucnextcn.f (𝜑𝐹 ∈ (𝑇 Cnu𝑈))
ucnextcn.c (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
Assertion
Ref Expression
ucnextcn (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾))

Proof of Theorem ucnextcn
Dummy variables 𝑎 𝑏 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ucnextcn.x . 2 𝑋 = (Base‘𝑉)
2 ucnextcn.y . 2 𝑌 = (Base‘𝑊)
3 ucnextcn.j . 2 𝐽 = (TopOpen‘𝑉)
4 ucnextcn.k . 2 𝐾 = (TopOpen‘𝑊)
5 ucnextcn.u . 2 𝑈 = (UnifSt‘𝑊)
6 ucnextcn.v . 2 (𝜑𝑉 ∈ TopSp)
7 ucnextcn.w . 2 (𝜑𝑊 ∈ TopSp)
8 ucnextcn.z . 2 (𝜑𝑊 ∈ CUnifSp)
9 ucnextcn.h . 2 (𝜑𝐾 ∈ Haus)
10 ucnextcn.a . 2 (𝜑𝐴𝑋)
11 ucnextcn.f . . . 4 (𝜑𝐹 ∈ (𝑇 Cnu𝑈))
12 ucnextcn.r . . . . . 6 (𝜑𝑉 ∈ UnifSp)
13 ucnextcn.t . . . . . . 7 𝑇 = (UnifSt‘(𝑉s 𝐴))
141, 13ressust 24202 . . . . . 6 ((𝑉 ∈ UnifSp ∧ 𝐴𝑋) → 𝑇 ∈ (UnifOn‘𝐴))
1512, 10, 14syl2anc 584 . . . . 5 (𝜑𝑇 ∈ (UnifOn‘𝐴))
16 cuspusp 24238 . . . . . . . 8 (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp)
178, 16syl 17 . . . . . . 7 (𝜑𝑊 ∈ UnifSp)
182, 5, 4isusp 24200 . . . . . . 7 (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝑌) ∧ 𝐾 = (unifTop‘𝑈)))
1917, 18sylib 218 . . . . . 6 (𝜑 → (𝑈 ∈ (UnifOn‘𝑌) ∧ 𝐾 = (unifTop‘𝑈)))
2019simpld 494 . . . . 5 (𝜑𝑈 ∈ (UnifOn‘𝑌))
21 isucn 24216 . . . . 5 ((𝑇 ∈ (UnifOn‘𝐴) ∧ 𝑈 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑇 Cnu𝑈) ↔ (𝐹:𝐴𝑌 ∧ ∀𝑤𝑈𝑣𝑇𝑦𝐴𝑧𝐴 (𝑦𝑣𝑧 → (𝐹𝑦)𝑤(𝐹𝑧)))))
2215, 20, 21syl2anc 584 . . . 4 (𝜑 → (𝐹 ∈ (𝑇 Cnu𝑈) ↔ (𝐹:𝐴𝑌 ∧ ∀𝑤𝑈𝑣𝑇𝑦𝐴𝑧𝐴 (𝑦𝑣𝑧 → (𝐹𝑦)𝑤(𝐹𝑧)))))
2311, 22mpbid 232 . . 3 (𝜑 → (𝐹:𝐴𝑌 ∧ ∀𝑤𝑈𝑣𝑇𝑦𝐴𝑧𝐴 (𝑦𝑣𝑧 → (𝐹𝑦)𝑤(𝐹𝑧))))
2423simpld 494 . 2 (𝜑𝐹:𝐴𝑌)
25 ucnextcn.c . 2 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
2620adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝑈 ∈ (UnifOn‘𝑌))
2726elfvexd 6915 . . . 4 ((𝜑𝑥𝑋) → 𝑌 ∈ V)
28 simpr 484 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥𝑋)
2925adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → ((cls‘𝐽)‘𝐴) = 𝑋)
3028, 29eleqtrrd 2837 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
311, 3istps 22872 . . . . . . . . 9 (𝑉 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
326, 31sylib 218 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
3332adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
3410adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐴𝑋)
35 trnei 23830 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋𝑥𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3633, 34, 28, 35syl3anc 1373 . . . . . 6 ((𝜑𝑥𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3730, 36mpbid 232 . . . . 5 ((𝜑𝑥𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
38 filfbas 23786 . . . . 5 ((((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴))
3937, 38syl 17 . . . 4 ((𝜑𝑥𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴))
4024adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐹:𝐴𝑌)
41 fmval 23881 . . . 4 ((𝑌 ∈ V ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴) ∧ 𝐹:𝐴𝑌) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎))))
4227, 39, 40, 41syl3anc 1373 . . 3 ((𝜑𝑥𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎))))
4315adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝑇 ∈ (UnifOn‘𝐴))
4411adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐹 ∈ (𝑇 Cnu𝑈))
45 ucnextcn.s . . . . . . . . . . 11 𝑆 = (UnifSt‘𝑉)
461, 45, 3isusp 24200 . . . . . . . . . 10 (𝑉 ∈ UnifSp ↔ (𝑆 ∈ (UnifOn‘𝑋) ∧ 𝐽 = (unifTop‘𝑆)))
4712, 46sylib 218 . . . . . . . . 9 (𝜑 → (𝑆 ∈ (UnifOn‘𝑋) ∧ 𝐽 = (unifTop‘𝑆)))
4847simpld 494 . . . . . . . 8 (𝜑𝑆 ∈ (UnifOn‘𝑋))
4948adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑆 ∈ (UnifOn‘𝑋))
5012adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑉 ∈ UnifSp)
516adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑉 ∈ TopSp)
521, 3, 45neipcfilu 24234 . . . . . . . 8 ((𝑉 ∈ UnifSp ∧ 𝑉 ∈ TopSp ∧ 𝑥𝑋) → ((nei‘𝐽)‘{𝑥}) ∈ (CauFilu𝑆))
5350, 51, 28, 52syl3anc 1373 . . . . . . 7 ((𝜑𝑥𝑋) → ((nei‘𝐽)‘{𝑥}) ∈ (CauFilu𝑆))
54 0nelfb 23769 . . . . . . . 8 ((((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴) → ¬ ∅ ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))
5539, 54syl 17 . . . . . . 7 ((𝜑𝑥𝑋) → ¬ ∅ ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))
56 trcfilu 24232 . . . . . . 7 ((𝑆 ∈ (UnifOn‘𝑋) ∧ (((nei‘𝐽)‘{𝑥}) ∈ (CauFilu𝑆) ∧ ¬ ∅ ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∧ 𝐴𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (CauFilu‘(𝑆t (𝐴 × 𝐴))))
5749, 53, 55, 34, 56syl121anc 1377 . . . . . 6 ((𝜑𝑥𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (CauFilu‘(𝑆t (𝐴 × 𝐴))))
5843elfvexd 6915 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐴 ∈ V)
59 ressuss 24201 . . . . . . . . 9 (𝐴 ∈ V → (UnifSt‘(𝑉s 𝐴)) = ((UnifSt‘𝑉) ↾t (𝐴 × 𝐴)))
6045oveq1i 7415 . . . . . . . . 9 (𝑆t (𝐴 × 𝐴)) = ((UnifSt‘𝑉) ↾t (𝐴 × 𝐴))
6159, 13, 603eqtr4g 2795 . . . . . . . 8 (𝐴 ∈ V → 𝑇 = (𝑆t (𝐴 × 𝐴)))
6261fveq2d 6880 . . . . . . 7 (𝐴 ∈ V → (CauFilu𝑇) = (CauFilu‘(𝑆t (𝐴 × 𝐴))))
6358, 62syl 17 . . . . . 6 ((𝜑𝑥𝑋) → (CauFilu𝑇) = (CauFilu‘(𝑆t (𝐴 × 𝐴))))
6457, 63eleqtrrd 2837 . . . . 5 ((𝜑𝑥𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (CauFilu𝑇))
65 imaeq2 6043 . . . . . . 7 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
6665cbvmptv 5225 . . . . . 6 (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎)) = (𝑏 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑏))
6766rneqi 5917 . . . . 5 ran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎)) = ran (𝑏 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑏))
6843, 26, 44, 64, 67fmucnd 24230 . . . 4 ((𝜑𝑥𝑋) → ran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎)) ∈ (CauFilu𝑈))
69 cfilufg 24231 . . . 4 ((𝑈 ∈ (UnifOn‘𝑌) ∧ ran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎)) ∈ (CauFilu𝑈)) → (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎))) ∈ (CauFilu𝑈))
7026, 68, 69syl2anc 584 . . 3 ((𝜑𝑥𝑋) → (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎))) ∈ (CauFilu𝑈))
7142, 70eqeltrd 2834 . 2 ((𝜑𝑥𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu𝑈))
721, 2, 3, 4, 5, 6, 7, 8, 9, 10, 24, 25, 71cnextucn 24241 1 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  wss 3926  c0 4308  {csn 4601   class class class wbr 5119  cmpt 5201   × cxp 5652  ran crn 5655  cima 5657  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  s cress 17251  t crest 17434  TopOpenctopn 17435  fBascfbas 21303  filGencfg 21304  TopOnctopon 22848  TopSpctps 22870  clsccl 22956  neicnei 23035   Cn ccn 23162  Hauscha 23246  Filcfil 23783   FilMap cfm 23871  CnExtccnext 23997  UnifOncust 24138  unifTopcutop 24169  UnifStcuss 24192  UnifSpcusp 24193   Cnucucn 24213  CauFiluccfilu 24224  CUnifSpccusp 24235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-unif 17294  df-rest 17436  df-topgen 17457  df-fbas 21312  df-fg 21313  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-cn 23165  df-cnp 23166  df-haus 23253  df-reg 23254  df-tx 23500  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-cnext 23998  df-ust 24139  df-utop 24170  df-uss 24195  df-usp 24196  df-ucn 24214  df-cfilu 24225  df-cusp 24236
This theorem is referenced by:  rrhcn  34028
  Copyright terms: Public domain W3C validator