Step | Hyp | Ref
| Expression |
1 | | ucnextcn.x |
. 2
⊢ 𝑋 = (Base‘𝑉) |
2 | | ucnextcn.y |
. 2
⊢ 𝑌 = (Base‘𝑊) |
3 | | ucnextcn.j |
. 2
⊢ 𝐽 = (TopOpen‘𝑉) |
4 | | ucnextcn.k |
. 2
⊢ 𝐾 = (TopOpen‘𝑊) |
5 | | ucnextcn.u |
. 2
⊢ 𝑈 = (UnifSt‘𝑊) |
6 | | ucnextcn.v |
. 2
⊢ (𝜑 → 𝑉 ∈ TopSp) |
7 | | ucnextcn.w |
. 2
⊢ (𝜑 → 𝑊 ∈ TopSp) |
8 | | ucnextcn.z |
. 2
⊢ (𝜑 → 𝑊 ∈ CUnifSp) |
9 | | ucnextcn.h |
. 2
⊢ (𝜑 → 𝐾 ∈ Haus) |
10 | | ucnextcn.a |
. 2
⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
11 | | ucnextcn.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝑇 Cnu𝑈)) |
12 | | ucnextcn.r |
. . . . . 6
⊢ (𝜑 → 𝑉 ∈ UnifSp) |
13 | | ucnextcn.t |
. . . . . . 7
⊢ 𝑇 = (UnifSt‘(𝑉 ↾s 𝐴)) |
14 | 1, 13 | ressust 23323 |
. . . . . 6
⊢ ((𝑉 ∈ UnifSp ∧ 𝐴 ⊆ 𝑋) → 𝑇 ∈ (UnifOn‘𝐴)) |
15 | 12, 10, 14 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ (UnifOn‘𝐴)) |
16 | | cuspusp 23360 |
. . . . . . . 8
⊢ (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp) |
17 | 8, 16 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ UnifSp) |
18 | 2, 5, 4 | isusp 23321 |
. . . . . . 7
⊢ (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝑌) ∧ 𝐾 = (unifTop‘𝑈))) |
19 | 17, 18 | sylib 217 |
. . . . . 6
⊢ (𝜑 → (𝑈 ∈ (UnifOn‘𝑌) ∧ 𝐾 = (unifTop‘𝑈))) |
20 | 19 | simpld 494 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑌)) |
21 | | isucn 23338 |
. . . . 5
⊢ ((𝑇 ∈ (UnifOn‘𝐴) ∧ 𝑈 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑇 Cnu𝑈) ↔ (𝐹:𝐴⟶𝑌 ∧ ∀𝑤 ∈ 𝑈 ∃𝑣 ∈ 𝑇 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑣𝑧 → (𝐹‘𝑦)𝑤(𝐹‘𝑧))))) |
22 | 15, 20, 21 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝐹 ∈ (𝑇 Cnu𝑈) ↔ (𝐹:𝐴⟶𝑌 ∧ ∀𝑤 ∈ 𝑈 ∃𝑣 ∈ 𝑇 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑣𝑧 → (𝐹‘𝑦)𝑤(𝐹‘𝑧))))) |
23 | 11, 22 | mpbid 231 |
. . 3
⊢ (𝜑 → (𝐹:𝐴⟶𝑌 ∧ ∀𝑤 ∈ 𝑈 ∃𝑣 ∈ 𝑇 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦𝑣𝑧 → (𝐹‘𝑦)𝑤(𝐹‘𝑧)))) |
24 | 23 | simpld 494 |
. 2
⊢ (𝜑 → 𝐹:𝐴⟶𝑌) |
25 | | ucnextcn.c |
. 2
⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋) |
26 | 20 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑈 ∈ (UnifOn‘𝑌)) |
27 | 26 | elfvexd 6790 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑌 ∈ V) |
28 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
29 | 25 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((cls‘𝐽)‘𝐴) = 𝑋) |
30 | 28, 29 | eleqtrrd 2842 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ((cls‘𝐽)‘𝐴)) |
31 | 1, 3 | istps 21991 |
. . . . . . . . 9
⊢ (𝑉 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
32 | 6, 31 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
33 | 32 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
34 | 10 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ⊆ 𝑋) |
35 | | trnei 22951 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
36 | 33, 34, 28, 35 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
37 | 30, 36 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)) |
38 | | filfbas 22907 |
. . . . 5
⊢
((((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴)) |
39 | 37, 38 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴)) |
40 | 24 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐹:𝐴⟶𝑌) |
41 | | fmval 23002 |
. . . 4
⊢ ((𝑌 ∈ V ∧
(((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴) ∧ 𝐹:𝐴⟶𝑌) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹 “ 𝑎)))) |
42 | 27, 39, 40, 41 | syl3anc 1369 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹 “ 𝑎)))) |
43 | 15 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑇 ∈ (UnifOn‘𝐴)) |
44 | 11 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐹 ∈ (𝑇 Cnu𝑈)) |
45 | | ucnextcn.s |
. . . . . . . . . . 11
⊢ 𝑆 = (UnifSt‘𝑉) |
46 | 1, 45, 3 | isusp 23321 |
. . . . . . . . . 10
⊢ (𝑉 ∈ UnifSp ↔ (𝑆 ∈ (UnifOn‘𝑋) ∧ 𝐽 = (unifTop‘𝑆))) |
47 | 12, 46 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ∈ (UnifOn‘𝑋) ∧ 𝐽 = (unifTop‘𝑆))) |
48 | 47 | simpld 494 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ (UnifOn‘𝑋)) |
49 | 48 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑆 ∈ (UnifOn‘𝑋)) |
50 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑉 ∈ UnifSp) |
51 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑉 ∈ TopSp) |
52 | 1, 3, 45 | neipcfilu 23356 |
. . . . . . . 8
⊢ ((𝑉 ∈ UnifSp ∧ 𝑉 ∈ TopSp ∧ 𝑥 ∈ 𝑋) → ((nei‘𝐽)‘{𝑥}) ∈ (CauFilu‘𝑆)) |
53 | 50, 51, 28, 52 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((nei‘𝐽)‘{𝑥}) ∈ (CauFilu‘𝑆)) |
54 | | 0nelfb 22890 |
. . . . . . . 8
⊢
((((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴) → ¬ ∅ ∈
(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) |
55 | 39, 54 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ¬ ∅ ∈
(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) |
56 | | trcfilu 23354 |
. . . . . . 7
⊢ ((𝑆 ∈ (UnifOn‘𝑋) ∧ (((nei‘𝐽)‘{𝑥}) ∈ (CauFilu‘𝑆) ∧ ¬ ∅ ∈
(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∧ 𝐴 ⊆ 𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (CauFilu‘(𝑆 ↾t (𝐴 × 𝐴)))) |
57 | 49, 53, 55, 34, 56 | syl121anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (CauFilu‘(𝑆 ↾t (𝐴 × 𝐴)))) |
58 | 43 | elfvexd 6790 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ V) |
59 | | ressuss 23322 |
. . . . . . . . 9
⊢ (𝐴 ∈ V →
(UnifSt‘(𝑉
↾s 𝐴)) =
((UnifSt‘𝑉)
↾t (𝐴
× 𝐴))) |
60 | 45 | oveq1i 7265 |
. . . . . . . . 9
⊢ (𝑆 ↾t (𝐴 × 𝐴)) = ((UnifSt‘𝑉) ↾t (𝐴 × 𝐴)) |
61 | 59, 13, 60 | 3eqtr4g 2804 |
. . . . . . . 8
⊢ (𝐴 ∈ V → 𝑇 = (𝑆 ↾t (𝐴 × 𝐴))) |
62 | 61 | fveq2d 6760 |
. . . . . . 7
⊢ (𝐴 ∈ V →
(CauFilu‘𝑇) = (CauFilu‘(𝑆 ↾t (𝐴 × 𝐴)))) |
63 | 58, 62 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (CauFilu‘𝑇) =
(CauFilu‘(𝑆 ↾t (𝐴 × 𝐴)))) |
64 | 57, 63 | eleqtrrd 2842 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (CauFilu‘𝑇)) |
65 | | imaeq2 5954 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (𝐹 “ 𝑎) = (𝐹 “ 𝑏)) |
66 | 65 | cbvmptv 5183 |
. . . . . 6
⊢ (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹 “ 𝑎)) = (𝑏 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹 “ 𝑏)) |
67 | 66 | rneqi 5835 |
. . . . 5
⊢ ran
(𝑎 ∈
(((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹 “ 𝑎)) = ran (𝑏 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹 “ 𝑏)) |
68 | 43, 26, 44, 64, 67 | fmucnd 23352 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹 “ 𝑎)) ∈ (CauFilu‘𝑈)) |
69 | | cfilufg 23353 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑌) ∧ ran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹 “ 𝑎)) ∈ (CauFilu‘𝑈)) → (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹 “ 𝑎))) ∈ (CauFilu‘𝑈)) |
70 | 26, 68, 69 | syl2anc 583 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹 “ 𝑎))) ∈ (CauFilu‘𝑈)) |
71 | 42, 70 | eqeltrd 2839 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu‘𝑈)) |
72 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
24, 25, 71 | cnextucn 23363 |
1
⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾)) |