Step | Hyp | Ref
| Expression |
1 | | ucnextcn.x |
. 2
β’ π = (Baseβπ) |
2 | | ucnextcn.y |
. 2
β’ π = (Baseβπ) |
3 | | ucnextcn.j |
. 2
β’ π½ = (TopOpenβπ) |
4 | | ucnextcn.k |
. 2
β’ πΎ = (TopOpenβπ) |
5 | | ucnextcn.u |
. 2
β’ π = (UnifStβπ) |
6 | | ucnextcn.v |
. 2
β’ (π β π β TopSp) |
7 | | ucnextcn.w |
. 2
β’ (π β π β TopSp) |
8 | | ucnextcn.z |
. 2
β’ (π β π β CUnifSp) |
9 | | ucnextcn.h |
. 2
β’ (π β πΎ β Haus) |
10 | | ucnextcn.a |
. 2
β’ (π β π΄ β π) |
11 | | ucnextcn.f |
. . . 4
β’ (π β πΉ β (π Cnuπ)) |
12 | | ucnextcn.r |
. . . . . 6
β’ (π β π β UnifSp) |
13 | | ucnextcn.t |
. . . . . . 7
β’ π = (UnifStβ(π βΎs π΄)) |
14 | 1, 13 | ressust 23768 |
. . . . . 6
β’ ((π β UnifSp β§ π΄ β π) β π β (UnifOnβπ΄)) |
15 | 12, 10, 14 | syl2anc 585 |
. . . . 5
β’ (π β π β (UnifOnβπ΄)) |
16 | | cuspusp 23805 |
. . . . . . . 8
β’ (π β CUnifSp β π β UnifSp) |
17 | 8, 16 | syl 17 |
. . . . . . 7
β’ (π β π β UnifSp) |
18 | 2, 5, 4 | isusp 23766 |
. . . . . . 7
β’ (π β UnifSp β (π β (UnifOnβπ) β§ πΎ = (unifTopβπ))) |
19 | 17, 18 | sylib 217 |
. . . . . 6
β’ (π β (π β (UnifOnβπ) β§ πΎ = (unifTopβπ))) |
20 | 19 | simpld 496 |
. . . . 5
β’ (π β π β (UnifOnβπ)) |
21 | | isucn 23783 |
. . . . 5
β’ ((π β (UnifOnβπ΄) β§ π β (UnifOnβπ)) β (πΉ β (π Cnuπ) β (πΉ:π΄βΆπ β§ βπ€ β π βπ£ β π βπ¦ β π΄ βπ§ β π΄ (π¦π£π§ β (πΉβπ¦)π€(πΉβπ§))))) |
22 | 15, 20, 21 | syl2anc 585 |
. . . 4
β’ (π β (πΉ β (π Cnuπ) β (πΉ:π΄βΆπ β§ βπ€ β π βπ£ β π βπ¦ β π΄ βπ§ β π΄ (π¦π£π§ β (πΉβπ¦)π€(πΉβπ§))))) |
23 | 11, 22 | mpbid 231 |
. . 3
β’ (π β (πΉ:π΄βΆπ β§ βπ€ β π βπ£ β π βπ¦ β π΄ βπ§ β π΄ (π¦π£π§ β (πΉβπ¦)π€(πΉβπ§)))) |
24 | 23 | simpld 496 |
. 2
β’ (π β πΉ:π΄βΆπ) |
25 | | ucnextcn.c |
. 2
β’ (π β ((clsβπ½)βπ΄) = π) |
26 | 20 | adantr 482 |
. . . . 5
β’ ((π β§ π₯ β π) β π β (UnifOnβπ)) |
27 | 26 | elfvexd 6931 |
. . . 4
β’ ((π β§ π₯ β π) β π β V) |
28 | | simpr 486 |
. . . . . . 7
β’ ((π β§ π₯ β π) β π₯ β π) |
29 | 25 | adantr 482 |
. . . . . . 7
β’ ((π β§ π₯ β π) β ((clsβπ½)βπ΄) = π) |
30 | 28, 29 | eleqtrrd 2837 |
. . . . . 6
β’ ((π β§ π₯ β π) β π₯ β ((clsβπ½)βπ΄)) |
31 | 1, 3 | istps 22436 |
. . . . . . . . 9
β’ (π β TopSp β π½ β (TopOnβπ)) |
32 | 6, 31 | sylib 217 |
. . . . . . . 8
β’ (π β π½ β (TopOnβπ)) |
33 | 32 | adantr 482 |
. . . . . . 7
β’ ((π β§ π₯ β π) β π½ β (TopOnβπ)) |
34 | 10 | adantr 482 |
. . . . . . 7
β’ ((π β§ π₯ β π) β π΄ β π) |
35 | | trnei 23396 |
. . . . . . 7
β’ ((π½ β (TopOnβπ) β§ π΄ β π β§ π₯ β π) β (π₯ β ((clsβπ½)βπ΄) β (((neiβπ½)β{π₯}) βΎt π΄) β (Filβπ΄))) |
36 | 33, 34, 28, 35 | syl3anc 1372 |
. . . . . 6
β’ ((π β§ π₯ β π) β (π₯ β ((clsβπ½)βπ΄) β (((neiβπ½)β{π₯}) βΎt π΄) β (Filβπ΄))) |
37 | 30, 36 | mpbid 231 |
. . . . 5
β’ ((π β§ π₯ β π) β (((neiβπ½)β{π₯}) βΎt π΄) β (Filβπ΄)) |
38 | | filfbas 23352 |
. . . . 5
β’
((((neiβπ½)β{π₯}) βΎt π΄) β (Filβπ΄) β (((neiβπ½)β{π₯}) βΎt π΄) β (fBasβπ΄)) |
39 | 37, 38 | syl 17 |
. . . 4
β’ ((π β§ π₯ β π) β (((neiβπ½)β{π₯}) βΎt π΄) β (fBasβπ΄)) |
40 | 24 | adantr 482 |
. . . 4
β’ ((π β§ π₯ β π) β πΉ:π΄βΆπ) |
41 | | fmval 23447 |
. . . 4
β’ ((π β V β§
(((neiβπ½)β{π₯}) βΎt π΄) β (fBasβπ΄) β§ πΉ:π΄βΆπ) β ((π FilMap πΉ)β(((neiβπ½)β{π₯}) βΎt π΄)) = (πfilGenran (π β (((neiβπ½)β{π₯}) βΎt π΄) β¦ (πΉ β π)))) |
42 | 27, 39, 40, 41 | syl3anc 1372 |
. . 3
β’ ((π β§ π₯ β π) β ((π FilMap πΉ)β(((neiβπ½)β{π₯}) βΎt π΄)) = (πfilGenran (π β (((neiβπ½)β{π₯}) βΎt π΄) β¦ (πΉ β π)))) |
43 | 15 | adantr 482 |
. . . . 5
β’ ((π β§ π₯ β π) β π β (UnifOnβπ΄)) |
44 | 11 | adantr 482 |
. . . . 5
β’ ((π β§ π₯ β π) β πΉ β (π Cnuπ)) |
45 | | ucnextcn.s |
. . . . . . . . . . 11
β’ π = (UnifStβπ) |
46 | 1, 45, 3 | isusp 23766 |
. . . . . . . . . 10
β’ (π β UnifSp β (π β (UnifOnβπ) β§ π½ = (unifTopβπ))) |
47 | 12, 46 | sylib 217 |
. . . . . . . . 9
β’ (π β (π β (UnifOnβπ) β§ π½ = (unifTopβπ))) |
48 | 47 | simpld 496 |
. . . . . . . 8
β’ (π β π β (UnifOnβπ)) |
49 | 48 | adantr 482 |
. . . . . . 7
β’ ((π β§ π₯ β π) β π β (UnifOnβπ)) |
50 | 12 | adantr 482 |
. . . . . . . 8
β’ ((π β§ π₯ β π) β π β UnifSp) |
51 | 6 | adantr 482 |
. . . . . . . 8
β’ ((π β§ π₯ β π) β π β TopSp) |
52 | 1, 3, 45 | neipcfilu 23801 |
. . . . . . . 8
β’ ((π β UnifSp β§ π β TopSp β§ π₯ β π) β ((neiβπ½)β{π₯}) β (CauFiluβπ)) |
53 | 50, 51, 28, 52 | syl3anc 1372 |
. . . . . . 7
β’ ((π β§ π₯ β π) β ((neiβπ½)β{π₯}) β (CauFiluβπ)) |
54 | | 0nelfb 23335 |
. . . . . . . 8
β’
((((neiβπ½)β{π₯}) βΎt π΄) β (fBasβπ΄) β Β¬ β
β
(((neiβπ½)β{π₯}) βΎt π΄)) |
55 | 39, 54 | syl 17 |
. . . . . . 7
β’ ((π β§ π₯ β π) β Β¬ β
β
(((neiβπ½)β{π₯}) βΎt π΄)) |
56 | | trcfilu 23799 |
. . . . . . 7
β’ ((π β (UnifOnβπ) β§ (((neiβπ½)β{π₯}) β (CauFiluβπ) β§ Β¬ β
β
(((neiβπ½)β{π₯}) βΎt π΄)) β§ π΄ β π) β (((neiβπ½)β{π₯}) βΎt π΄) β (CauFiluβ(π βΎt (π΄ Γ π΄)))) |
57 | 49, 53, 55, 34, 56 | syl121anc 1376 |
. . . . . 6
β’ ((π β§ π₯ β π) β (((neiβπ½)β{π₯}) βΎt π΄) β (CauFiluβ(π βΎt (π΄ Γ π΄)))) |
58 | 43 | elfvexd 6931 |
. . . . . . 7
β’ ((π β§ π₯ β π) β π΄ β V) |
59 | | ressuss 23767 |
. . . . . . . . 9
β’ (π΄ β V β
(UnifStβ(π
βΎs π΄)) =
((UnifStβπ)
βΎt (π΄
Γ π΄))) |
60 | 45 | oveq1i 7419 |
. . . . . . . . 9
β’ (π βΎt (π΄ Γ π΄)) = ((UnifStβπ) βΎt (π΄ Γ π΄)) |
61 | 59, 13, 60 | 3eqtr4g 2798 |
. . . . . . . 8
β’ (π΄ β V β π = (π βΎt (π΄ Γ π΄))) |
62 | 61 | fveq2d 6896 |
. . . . . . 7
β’ (π΄ β V β
(CauFiluβπ) = (CauFiluβ(π βΎt (π΄ Γ π΄)))) |
63 | 58, 62 | syl 17 |
. . . . . 6
β’ ((π β§ π₯ β π) β (CauFiluβπ) =
(CauFiluβ(π βΎt (π΄ Γ π΄)))) |
64 | 57, 63 | eleqtrrd 2837 |
. . . . 5
β’ ((π β§ π₯ β π) β (((neiβπ½)β{π₯}) βΎt π΄) β (CauFiluβπ)) |
65 | | imaeq2 6056 |
. . . . . . 7
β’ (π = π β (πΉ β π) = (πΉ β π)) |
66 | 65 | cbvmptv 5262 |
. . . . . 6
β’ (π β (((neiβπ½)β{π₯}) βΎt π΄) β¦ (πΉ β π)) = (π β (((neiβπ½)β{π₯}) βΎt π΄) β¦ (πΉ β π)) |
67 | 66 | rneqi 5937 |
. . . . 5
β’ ran
(π β
(((neiβπ½)β{π₯}) βΎt π΄) β¦ (πΉ β π)) = ran (π β (((neiβπ½)β{π₯}) βΎt π΄) β¦ (πΉ β π)) |
68 | 43, 26, 44, 64, 67 | fmucnd 23797 |
. . . 4
β’ ((π β§ π₯ β π) β ran (π β (((neiβπ½)β{π₯}) βΎt π΄) β¦ (πΉ β π)) β (CauFiluβπ)) |
69 | | cfilufg 23798 |
. . . 4
β’ ((π β (UnifOnβπ) β§ ran (π β (((neiβπ½)β{π₯}) βΎt π΄) β¦ (πΉ β π)) β (CauFiluβπ)) β (πfilGenran (π β (((neiβπ½)β{π₯}) βΎt π΄) β¦ (πΉ β π))) β (CauFiluβπ)) |
70 | 26, 68, 69 | syl2anc 585 |
. . 3
β’ ((π β§ π₯ β π) β (πfilGenran (π β (((neiβπ½)β{π₯}) βΎt π΄) β¦ (πΉ β π))) β (CauFiluβπ)) |
71 | 42, 70 | eqeltrd 2834 |
. 2
β’ ((π β§ π₯ β π) β ((π FilMap πΉ)β(((neiβπ½)β{π₯}) βΎt π΄)) β (CauFiluβπ)) |
72 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
24, 25, 71 | cnextucn 23808 |
1
β’ (π β ((π½CnExtπΎ)βπΉ) β (π½ Cn πΎ)) |