MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnextcn Structured version   Visualization version   GIF version

Theorem ucnextcn 24198
Description: Extension by continuity. Theorem 2 of [BourbakiTop1] p. II.20. Given an uniform space on a set 𝑋, a subset 𝐴 dense in 𝑋, and a function 𝐹 uniformly continuous from 𝐴 to 𝑌, that function can be extended by continuity to the whole 𝑋, and its extension is uniformly continuous. (Contributed by Thierry Arnoux, 25-Jan-2018.)
Hypotheses
Ref Expression
ucnextcn.x 𝑋 = (Base‘𝑉)
ucnextcn.y 𝑌 = (Base‘𝑊)
ucnextcn.j 𝐽 = (TopOpen‘𝑉)
ucnextcn.k 𝐾 = (TopOpen‘𝑊)
ucnextcn.s 𝑆 = (UnifSt‘𝑉)
ucnextcn.t 𝑇 = (UnifSt‘(𝑉s 𝐴))
ucnextcn.u 𝑈 = (UnifSt‘𝑊)
ucnextcn.v (𝜑𝑉 ∈ TopSp)
ucnextcn.r (𝜑𝑉 ∈ UnifSp)
ucnextcn.w (𝜑𝑊 ∈ TopSp)
ucnextcn.z (𝜑𝑊 ∈ CUnifSp)
ucnextcn.h (𝜑𝐾 ∈ Haus)
ucnextcn.a (𝜑𝐴𝑋)
ucnextcn.f (𝜑𝐹 ∈ (𝑇 Cnu𝑈))
ucnextcn.c (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
Assertion
Ref Expression
ucnextcn (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾))

Proof of Theorem ucnextcn
Dummy variables 𝑎 𝑏 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ucnextcn.x . 2 𝑋 = (Base‘𝑉)
2 ucnextcn.y . 2 𝑌 = (Base‘𝑊)
3 ucnextcn.j . 2 𝐽 = (TopOpen‘𝑉)
4 ucnextcn.k . 2 𝐾 = (TopOpen‘𝑊)
5 ucnextcn.u . 2 𝑈 = (UnifSt‘𝑊)
6 ucnextcn.v . 2 (𝜑𝑉 ∈ TopSp)
7 ucnextcn.w . 2 (𝜑𝑊 ∈ TopSp)
8 ucnextcn.z . 2 (𝜑𝑊 ∈ CUnifSp)
9 ucnextcn.h . 2 (𝜑𝐾 ∈ Haus)
10 ucnextcn.a . 2 (𝜑𝐴𝑋)
11 ucnextcn.f . . . 4 (𝜑𝐹 ∈ (𝑇 Cnu𝑈))
12 ucnextcn.r . . . . . 6 (𝜑𝑉 ∈ UnifSp)
13 ucnextcn.t . . . . . . 7 𝑇 = (UnifSt‘(𝑉s 𝐴))
141, 13ressust 24158 . . . . . 6 ((𝑉 ∈ UnifSp ∧ 𝐴𝑋) → 𝑇 ∈ (UnifOn‘𝐴))
1512, 10, 14syl2anc 584 . . . . 5 (𝜑𝑇 ∈ (UnifOn‘𝐴))
16 cuspusp 24194 . . . . . . . 8 (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp)
178, 16syl 17 . . . . . . 7 (𝜑𝑊 ∈ UnifSp)
182, 5, 4isusp 24156 . . . . . . 7 (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝑌) ∧ 𝐾 = (unifTop‘𝑈)))
1917, 18sylib 218 . . . . . 6 (𝜑 → (𝑈 ∈ (UnifOn‘𝑌) ∧ 𝐾 = (unifTop‘𝑈)))
2019simpld 494 . . . . 5 (𝜑𝑈 ∈ (UnifOn‘𝑌))
21 isucn 24172 . . . . 5 ((𝑇 ∈ (UnifOn‘𝐴) ∧ 𝑈 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑇 Cnu𝑈) ↔ (𝐹:𝐴𝑌 ∧ ∀𝑤𝑈𝑣𝑇𝑦𝐴𝑧𝐴 (𝑦𝑣𝑧 → (𝐹𝑦)𝑤(𝐹𝑧)))))
2215, 20, 21syl2anc 584 . . . 4 (𝜑 → (𝐹 ∈ (𝑇 Cnu𝑈) ↔ (𝐹:𝐴𝑌 ∧ ∀𝑤𝑈𝑣𝑇𝑦𝐴𝑧𝐴 (𝑦𝑣𝑧 → (𝐹𝑦)𝑤(𝐹𝑧)))))
2311, 22mpbid 232 . . 3 (𝜑 → (𝐹:𝐴𝑌 ∧ ∀𝑤𝑈𝑣𝑇𝑦𝐴𝑧𝐴 (𝑦𝑣𝑧 → (𝐹𝑦)𝑤(𝐹𝑧))))
2423simpld 494 . 2 (𝜑𝐹:𝐴𝑌)
25 ucnextcn.c . 2 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
2620adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝑈 ∈ (UnifOn‘𝑌))
2726elfvexd 6900 . . . 4 ((𝜑𝑥𝑋) → 𝑌 ∈ V)
28 simpr 484 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥𝑋)
2925adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → ((cls‘𝐽)‘𝐴) = 𝑋)
3028, 29eleqtrrd 2832 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
311, 3istps 22828 . . . . . . . . 9 (𝑉 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
326, 31sylib 218 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
3332adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
3410adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐴𝑋)
35 trnei 23786 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋𝑥𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3633, 34, 28, 35syl3anc 1373 . . . . . 6 ((𝜑𝑥𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3730, 36mpbid 232 . . . . 5 ((𝜑𝑥𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
38 filfbas 23742 . . . . 5 ((((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴))
3937, 38syl 17 . . . 4 ((𝜑𝑥𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴))
4024adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐹:𝐴𝑌)
41 fmval 23837 . . . 4 ((𝑌 ∈ V ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴) ∧ 𝐹:𝐴𝑌) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎))))
4227, 39, 40, 41syl3anc 1373 . . 3 ((𝜑𝑥𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎))))
4315adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝑇 ∈ (UnifOn‘𝐴))
4411adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐹 ∈ (𝑇 Cnu𝑈))
45 ucnextcn.s . . . . . . . . . . 11 𝑆 = (UnifSt‘𝑉)
461, 45, 3isusp 24156 . . . . . . . . . 10 (𝑉 ∈ UnifSp ↔ (𝑆 ∈ (UnifOn‘𝑋) ∧ 𝐽 = (unifTop‘𝑆)))
4712, 46sylib 218 . . . . . . . . 9 (𝜑 → (𝑆 ∈ (UnifOn‘𝑋) ∧ 𝐽 = (unifTop‘𝑆)))
4847simpld 494 . . . . . . . 8 (𝜑𝑆 ∈ (UnifOn‘𝑋))
4948adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑆 ∈ (UnifOn‘𝑋))
5012adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑉 ∈ UnifSp)
516adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑉 ∈ TopSp)
521, 3, 45neipcfilu 24190 . . . . . . . 8 ((𝑉 ∈ UnifSp ∧ 𝑉 ∈ TopSp ∧ 𝑥𝑋) → ((nei‘𝐽)‘{𝑥}) ∈ (CauFilu𝑆))
5350, 51, 28, 52syl3anc 1373 . . . . . . 7 ((𝜑𝑥𝑋) → ((nei‘𝐽)‘{𝑥}) ∈ (CauFilu𝑆))
54 0nelfb 23725 . . . . . . . 8 ((((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴) → ¬ ∅ ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))
5539, 54syl 17 . . . . . . 7 ((𝜑𝑥𝑋) → ¬ ∅ ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))
56 trcfilu 24188 . . . . . . 7 ((𝑆 ∈ (UnifOn‘𝑋) ∧ (((nei‘𝐽)‘{𝑥}) ∈ (CauFilu𝑆) ∧ ¬ ∅ ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∧ 𝐴𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (CauFilu‘(𝑆t (𝐴 × 𝐴))))
5749, 53, 55, 34, 56syl121anc 1377 . . . . . 6 ((𝜑𝑥𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (CauFilu‘(𝑆t (𝐴 × 𝐴))))
5843elfvexd 6900 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐴 ∈ V)
59 ressuss 24157 . . . . . . . . 9 (𝐴 ∈ V → (UnifSt‘(𝑉s 𝐴)) = ((UnifSt‘𝑉) ↾t (𝐴 × 𝐴)))
6045oveq1i 7400 . . . . . . . . 9 (𝑆t (𝐴 × 𝐴)) = ((UnifSt‘𝑉) ↾t (𝐴 × 𝐴))
6159, 13, 603eqtr4g 2790 . . . . . . . 8 (𝐴 ∈ V → 𝑇 = (𝑆t (𝐴 × 𝐴)))
6261fveq2d 6865 . . . . . . 7 (𝐴 ∈ V → (CauFilu𝑇) = (CauFilu‘(𝑆t (𝐴 × 𝐴))))
6358, 62syl 17 . . . . . 6 ((𝜑𝑥𝑋) → (CauFilu𝑇) = (CauFilu‘(𝑆t (𝐴 × 𝐴))))
6457, 63eleqtrrd 2832 . . . . 5 ((𝜑𝑥𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (CauFilu𝑇))
65 imaeq2 6030 . . . . . . 7 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
6665cbvmptv 5214 . . . . . 6 (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎)) = (𝑏 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑏))
6766rneqi 5904 . . . . 5 ran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎)) = ran (𝑏 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑏))
6843, 26, 44, 64, 67fmucnd 24186 . . . 4 ((𝜑𝑥𝑋) → ran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎)) ∈ (CauFilu𝑈))
69 cfilufg 24187 . . . 4 ((𝑈 ∈ (UnifOn‘𝑌) ∧ ran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎)) ∈ (CauFilu𝑈)) → (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎))) ∈ (CauFilu𝑈))
7026, 68, 69syl2anc 584 . . 3 ((𝜑𝑥𝑋) → (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎))) ∈ (CauFilu𝑈))
7142, 70eqeltrd 2829 . 2 ((𝜑𝑥𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu𝑈))
721, 2, 3, 4, 5, 6, 7, 8, 9, 10, 24, 25, 71cnextucn 24197 1 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  cmpt 5191   × cxp 5639  ran crn 5642  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  t crest 17390  TopOpenctopn 17391  fBascfbas 21259  filGencfg 21260  TopOnctopon 22804  TopSpctps 22826  clsccl 22912  neicnei 22991   Cn ccn 23118  Hauscha 23202  Filcfil 23739   FilMap cfm 23827  CnExtccnext 23953  UnifOncust 24094  unifTopcutop 24125  UnifStcuss 24148  UnifSpcusp 24149   Cnucucn 24169  CauFiluccfilu 24180  CUnifSpccusp 24191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-unif 17250  df-rest 17392  df-topgen 17413  df-fbas 21268  df-fg 21269  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-cn 23121  df-cnp 23122  df-haus 23209  df-reg 23210  df-tx 23456  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-cnext 23954  df-ust 24095  df-utop 24126  df-uss 24151  df-usp 24152  df-ucn 24170  df-cfilu 24181  df-cusp 24192
This theorem is referenced by:  rrhcn  33994
  Copyright terms: Public domain W3C validator