MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnextcn Structured version   Visualization version   GIF version

Theorem ucnextcn 24216
Description: Extension by continuity. Theorem 2 of [BourbakiTop1] p. II.20. Given an uniform space on a set 𝑋, a subset 𝐴 dense in 𝑋, and a function 𝐹 uniformly continuous from 𝐴 to 𝑌, that function can be extended by continuity to the whole 𝑋, and its extension is uniformly continuous. (Contributed by Thierry Arnoux, 25-Jan-2018.)
Hypotheses
Ref Expression
ucnextcn.x 𝑋 = (Base‘𝑉)
ucnextcn.y 𝑌 = (Base‘𝑊)
ucnextcn.j 𝐽 = (TopOpen‘𝑉)
ucnextcn.k 𝐾 = (TopOpen‘𝑊)
ucnextcn.s 𝑆 = (UnifSt‘𝑉)
ucnextcn.t 𝑇 = (UnifSt‘(𝑉s 𝐴))
ucnextcn.u 𝑈 = (UnifSt‘𝑊)
ucnextcn.v (𝜑𝑉 ∈ TopSp)
ucnextcn.r (𝜑𝑉 ∈ UnifSp)
ucnextcn.w (𝜑𝑊 ∈ TopSp)
ucnextcn.z (𝜑𝑊 ∈ CUnifSp)
ucnextcn.h (𝜑𝐾 ∈ Haus)
ucnextcn.a (𝜑𝐴𝑋)
ucnextcn.f (𝜑𝐹 ∈ (𝑇 Cnu𝑈))
ucnextcn.c (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
Assertion
Ref Expression
ucnextcn (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾))

Proof of Theorem ucnextcn
Dummy variables 𝑎 𝑏 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ucnextcn.x . 2 𝑋 = (Base‘𝑉)
2 ucnextcn.y . 2 𝑌 = (Base‘𝑊)
3 ucnextcn.j . 2 𝐽 = (TopOpen‘𝑉)
4 ucnextcn.k . 2 𝐾 = (TopOpen‘𝑊)
5 ucnextcn.u . 2 𝑈 = (UnifSt‘𝑊)
6 ucnextcn.v . 2 (𝜑𝑉 ∈ TopSp)
7 ucnextcn.w . 2 (𝜑𝑊 ∈ TopSp)
8 ucnextcn.z . 2 (𝜑𝑊 ∈ CUnifSp)
9 ucnextcn.h . 2 (𝜑𝐾 ∈ Haus)
10 ucnextcn.a . 2 (𝜑𝐴𝑋)
11 ucnextcn.f . . . 4 (𝜑𝐹 ∈ (𝑇 Cnu𝑈))
12 ucnextcn.r . . . . . 6 (𝜑𝑉 ∈ UnifSp)
13 ucnextcn.t . . . . . . 7 𝑇 = (UnifSt‘(𝑉s 𝐴))
141, 13ressust 24176 . . . . . 6 ((𝑉 ∈ UnifSp ∧ 𝐴𝑋) → 𝑇 ∈ (UnifOn‘𝐴))
1512, 10, 14syl2anc 584 . . . . 5 (𝜑𝑇 ∈ (UnifOn‘𝐴))
16 cuspusp 24212 . . . . . . . 8 (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp)
178, 16syl 17 . . . . . . 7 (𝜑𝑊 ∈ UnifSp)
182, 5, 4isusp 24174 . . . . . . 7 (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝑌) ∧ 𝐾 = (unifTop‘𝑈)))
1917, 18sylib 218 . . . . . 6 (𝜑 → (𝑈 ∈ (UnifOn‘𝑌) ∧ 𝐾 = (unifTop‘𝑈)))
2019simpld 494 . . . . 5 (𝜑𝑈 ∈ (UnifOn‘𝑌))
21 isucn 24190 . . . . 5 ((𝑇 ∈ (UnifOn‘𝐴) ∧ 𝑈 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑇 Cnu𝑈) ↔ (𝐹:𝐴𝑌 ∧ ∀𝑤𝑈𝑣𝑇𝑦𝐴𝑧𝐴 (𝑦𝑣𝑧 → (𝐹𝑦)𝑤(𝐹𝑧)))))
2215, 20, 21syl2anc 584 . . . 4 (𝜑 → (𝐹 ∈ (𝑇 Cnu𝑈) ↔ (𝐹:𝐴𝑌 ∧ ∀𝑤𝑈𝑣𝑇𝑦𝐴𝑧𝐴 (𝑦𝑣𝑧 → (𝐹𝑦)𝑤(𝐹𝑧)))))
2311, 22mpbid 232 . . 3 (𝜑 → (𝐹:𝐴𝑌 ∧ ∀𝑤𝑈𝑣𝑇𝑦𝐴𝑧𝐴 (𝑦𝑣𝑧 → (𝐹𝑦)𝑤(𝐹𝑧))))
2423simpld 494 . 2 (𝜑𝐹:𝐴𝑌)
25 ucnextcn.c . 2 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
2620adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝑈 ∈ (UnifOn‘𝑌))
2726elfvexd 6858 . . . 4 ((𝜑𝑥𝑋) → 𝑌 ∈ V)
28 simpr 484 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥𝑋)
2925adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → ((cls‘𝐽)‘𝐴) = 𝑋)
3028, 29eleqtrrd 2834 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
311, 3istps 22847 . . . . . . . . 9 (𝑉 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
326, 31sylib 218 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
3332adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
3410adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐴𝑋)
35 trnei 23805 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋𝑥𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3633, 34, 28, 35syl3anc 1373 . . . . . 6 ((𝜑𝑥𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3730, 36mpbid 232 . . . . 5 ((𝜑𝑥𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
38 filfbas 23761 . . . . 5 ((((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴))
3937, 38syl 17 . . . 4 ((𝜑𝑥𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴))
4024adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐹:𝐴𝑌)
41 fmval 23856 . . . 4 ((𝑌 ∈ V ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴) ∧ 𝐹:𝐴𝑌) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎))))
4227, 39, 40, 41syl3anc 1373 . . 3 ((𝜑𝑥𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎))))
4315adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝑇 ∈ (UnifOn‘𝐴))
4411adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐹 ∈ (𝑇 Cnu𝑈))
45 ucnextcn.s . . . . . . . . . . 11 𝑆 = (UnifSt‘𝑉)
461, 45, 3isusp 24174 . . . . . . . . . 10 (𝑉 ∈ UnifSp ↔ (𝑆 ∈ (UnifOn‘𝑋) ∧ 𝐽 = (unifTop‘𝑆)))
4712, 46sylib 218 . . . . . . . . 9 (𝜑 → (𝑆 ∈ (UnifOn‘𝑋) ∧ 𝐽 = (unifTop‘𝑆)))
4847simpld 494 . . . . . . . 8 (𝜑𝑆 ∈ (UnifOn‘𝑋))
4948adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑆 ∈ (UnifOn‘𝑋))
5012adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑉 ∈ UnifSp)
516adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑉 ∈ TopSp)
521, 3, 45neipcfilu 24208 . . . . . . . 8 ((𝑉 ∈ UnifSp ∧ 𝑉 ∈ TopSp ∧ 𝑥𝑋) → ((nei‘𝐽)‘{𝑥}) ∈ (CauFilu𝑆))
5350, 51, 28, 52syl3anc 1373 . . . . . . 7 ((𝜑𝑥𝑋) → ((nei‘𝐽)‘{𝑥}) ∈ (CauFilu𝑆))
54 0nelfb 23744 . . . . . . . 8 ((((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴) → ¬ ∅ ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))
5539, 54syl 17 . . . . . . 7 ((𝜑𝑥𝑋) → ¬ ∅ ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))
56 trcfilu 24206 . . . . . . 7 ((𝑆 ∈ (UnifOn‘𝑋) ∧ (((nei‘𝐽)‘{𝑥}) ∈ (CauFilu𝑆) ∧ ¬ ∅ ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∧ 𝐴𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (CauFilu‘(𝑆t (𝐴 × 𝐴))))
5749, 53, 55, 34, 56syl121anc 1377 . . . . . 6 ((𝜑𝑥𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (CauFilu‘(𝑆t (𝐴 × 𝐴))))
5843elfvexd 6858 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐴 ∈ V)
59 ressuss 24175 . . . . . . . . 9 (𝐴 ∈ V → (UnifSt‘(𝑉s 𝐴)) = ((UnifSt‘𝑉) ↾t (𝐴 × 𝐴)))
6045oveq1i 7356 . . . . . . . . 9 (𝑆t (𝐴 × 𝐴)) = ((UnifSt‘𝑉) ↾t (𝐴 × 𝐴))
6159, 13, 603eqtr4g 2791 . . . . . . . 8 (𝐴 ∈ V → 𝑇 = (𝑆t (𝐴 × 𝐴)))
6261fveq2d 6826 . . . . . . 7 (𝐴 ∈ V → (CauFilu𝑇) = (CauFilu‘(𝑆t (𝐴 × 𝐴))))
6358, 62syl 17 . . . . . 6 ((𝜑𝑥𝑋) → (CauFilu𝑇) = (CauFilu‘(𝑆t (𝐴 × 𝐴))))
6457, 63eleqtrrd 2834 . . . . 5 ((𝜑𝑥𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (CauFilu𝑇))
65 imaeq2 6005 . . . . . . 7 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
6665cbvmptv 5195 . . . . . 6 (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎)) = (𝑏 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑏))
6766rneqi 5877 . . . . 5 ran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎)) = ran (𝑏 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑏))
6843, 26, 44, 64, 67fmucnd 24204 . . . 4 ((𝜑𝑥𝑋) → ran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎)) ∈ (CauFilu𝑈))
69 cfilufg 24205 . . . 4 ((𝑈 ∈ (UnifOn‘𝑌) ∧ ran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎)) ∈ (CauFilu𝑈)) → (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎))) ∈ (CauFilu𝑈))
7026, 68, 69syl2anc 584 . . 3 ((𝜑𝑥𝑋) → (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎))) ∈ (CauFilu𝑈))
7142, 70eqeltrd 2831 . 2 ((𝜑𝑥𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu𝑈))
721, 2, 3, 4, 5, 6, 7, 8, 9, 10, 24, 25, 71cnextucn 24215 1 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3902  c0 4283  {csn 4576   class class class wbr 5091  cmpt 5172   × cxp 5614  ran crn 5617  cima 5619  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17117  s cress 17138  t crest 17321  TopOpenctopn 17322  fBascfbas 21277  filGencfg 21278  TopOnctopon 22823  TopSpctps 22845  clsccl 22931  neicnei 23010   Cn ccn 23137  Hauscha 23221  Filcfil 23758   FilMap cfm 23846  CnExtccnext 23972  UnifOncust 24113  unifTopcutop 24143  UnifStcuss 24166  UnifSpcusp 24167   Cnucucn 24187  CauFiluccfilu 24198  CUnifSpccusp 24209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-unif 17181  df-rest 17323  df-topgen 17344  df-fbas 21286  df-fg 21287  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-cn 23140  df-cnp 23141  df-haus 23228  df-reg 23229  df-tx 23475  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-cnext 23973  df-ust 24114  df-utop 24144  df-uss 24169  df-usp 24170  df-ucn 24188  df-cfilu 24199  df-cusp 24210
This theorem is referenced by:  rrhcn  34005
  Copyright terms: Public domain W3C validator