MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextucn Structured version   Visualization version   GIF version

Theorem cnextucn 24196
Description: Extension by continuity. Proposition 11 of [BourbakiTop1] p. II.20. Given a topology 𝐽 on 𝑋, a subset 𝐴 dense in 𝑋, this states a condition for 𝐹 from 𝐴 to a space 𝑌 Hausdorff and complete to be extensible by continuity. (Contributed by Thierry Arnoux, 4-Dec-2017.)
Hypotheses
Ref Expression
cnextucn.x 𝑋 = (Base‘𝑉)
cnextucn.y 𝑌 = (Base‘𝑊)
cnextucn.j 𝐽 = (TopOpen‘𝑉)
cnextucn.k 𝐾 = (TopOpen‘𝑊)
cnextucn.u 𝑈 = (UnifSt‘𝑊)
cnextucn.v (𝜑𝑉 ∈ TopSp)
cnextucn.t (𝜑𝑊 ∈ TopSp)
cnextucn.w (𝜑𝑊 ∈ CUnifSp)
cnextucn.h (𝜑𝐾 ∈ Haus)
cnextucn.a (𝜑𝐴𝑋)
cnextucn.f (𝜑𝐹:𝐴𝑌)
cnextucn.c (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
cnextucn.l ((𝜑𝑥𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu𝑈))
Assertion
Ref Expression
cnextucn (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥
Allowed substitution hints:   𝑈(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem cnextucn
StepHypRef Expression
1 eqid 2730 . 2 𝐽 = 𝐽
2 eqid 2730 . 2 𝐾 = 𝐾
3 cnextucn.v . . 3 (𝜑𝑉 ∈ TopSp)
4 cnextucn.j . . . 4 𝐽 = (TopOpen‘𝑉)
54tpstop 22830 . . 3 (𝑉 ∈ TopSp → 𝐽 ∈ Top)
63, 5syl 17 . 2 (𝜑𝐽 ∈ Top)
7 cnextucn.h . 2 (𝜑𝐾 ∈ Haus)
8 cnextucn.f . . 3 (𝜑𝐹:𝐴𝑌)
9 cnextucn.t . . . . 5 (𝜑𝑊 ∈ TopSp)
10 cnextucn.y . . . . . 6 𝑌 = (Base‘𝑊)
11 cnextucn.k . . . . . 6 𝐾 = (TopOpen‘𝑊)
1210, 11tpsuni 22829 . . . . 5 (𝑊 ∈ TopSp → 𝑌 = 𝐾)
139, 12syl 17 . . . 4 (𝜑𝑌 = 𝐾)
1413feq3d 6675 . . 3 (𝜑 → (𝐹:𝐴𝑌𝐹:𝐴 𝐾))
158, 14mpbid 232 . 2 (𝜑𝐹:𝐴 𝐾)
16 cnextucn.a . . 3 (𝜑𝐴𝑋)
17 cnextucn.x . . . . 5 𝑋 = (Base‘𝑉)
1817, 4tpsuni 22829 . . . 4 (𝑉 ∈ TopSp → 𝑋 = 𝐽)
193, 18syl 17 . . 3 (𝜑𝑋 = 𝐽)
2016, 19sseqtrd 3985 . 2 (𝜑𝐴 𝐽)
21 cnextucn.c . . 3 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
2221, 19eqtrd 2765 . 2 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐽)
2310, 11istps 22827 . . . . . 6 (𝑊 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘𝑌))
249, 23sylib 218 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
2524adantr 480 . . . 4 ((𝜑𝑥 𝐽) → 𝐾 ∈ (TopOn‘𝑌))
2619eleq2d 2815 . . . . . . 7 (𝜑 → (𝑥𝑋𝑥 𝐽))
2726biimpar 477 . . . . . 6 ((𝜑𝑥 𝐽) → 𝑥𝑋)
2821adantr 480 . . . . . 6 ((𝜑𝑥 𝐽) → ((cls‘𝐽)‘𝐴) = 𝑋)
2927, 28eleqtrrd 2832 . . . . 5 ((𝜑𝑥 𝐽) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
30 toptopon2 22811 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
316, 30sylib 218 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
32 fveq2 6860 . . . . . . . . . 10 (𝑋 = 𝐽 → (TopOn‘𝑋) = (TopOn‘ 𝐽))
3332eleq2d 2815 . . . . . . . . 9 (𝑋 = 𝐽 → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ (TopOn‘ 𝐽)))
3419, 33syl 17 . . . . . . . 8 (𝜑 → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ (TopOn‘ 𝐽)))
3531, 34mpbird 257 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
3635adantr 480 . . . . . 6 ((𝜑𝑥 𝐽) → 𝐽 ∈ (TopOn‘𝑋))
3716adantr 480 . . . . . 6 ((𝜑𝑥 𝐽) → 𝐴𝑋)
38 trnei 23785 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋𝑥𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3936, 37, 27, 38syl3anc 1373 . . . . 5 ((𝜑𝑥 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
4029, 39mpbid 232 . . . 4 ((𝜑𝑥 𝐽) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
418adantr 480 . . . 4 ((𝜑𝑥 𝐽) → 𝐹:𝐴𝑌)
42 flfval 23883 . . . 4 ((𝐾 ∈ (TopOn‘𝑌) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝑌) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴))))
4325, 40, 41, 42syl3anc 1373 . . 3 ((𝜑𝑥 𝐽) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴))))
44 cnextucn.w . . . . 5 (𝜑𝑊 ∈ CUnifSp)
4544adantr 480 . . . 4 ((𝜑𝑥 𝐽) → 𝑊 ∈ CUnifSp)
46 cnextucn.l . . . . . 6 ((𝜑𝑥𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu𝑈))
4727, 46syldan 591 . . . . 5 ((𝜑𝑥 𝐽) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu𝑈))
48 cnextucn.u . . . . . 6 𝑈 = (UnifSt‘𝑊)
4948fveq2i 6863 . . . . 5 (CauFilu𝑈) = (CauFilu‘(UnifSt‘𝑊))
5047, 49eleqtrdi 2839 . . . 4 ((𝜑𝑥 𝐽) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu‘(UnifSt‘𝑊)))
5110fvexi 6874 . . . . 5 𝑌 ∈ V
52 filfbas 23741 . . . . . 6 ((((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴))
5340, 52syl 17 . . . . 5 ((𝜑𝑥 𝐽) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴))
54 fmfil 23837 . . . . 5 ((𝑌 ∈ V ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴) ∧ 𝐹:𝐴𝑌) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (Fil‘𝑌))
5551, 53, 41, 54mp3an2i 1468 . . . 4 ((𝜑𝑥 𝐽) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (Fil‘𝑌))
5610, 11cuspcvg 24194 . . . 4 ((𝑊 ∈ CUnifSp ∧ ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu‘(UnifSt‘𝑊)) ∧ ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (Fil‘𝑌)) → (𝐾 fLim ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴))) ≠ ∅)
5745, 50, 55, 56syl3anc 1373 . . 3 ((𝜑𝑥 𝐽) → (𝐾 fLim ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴))) ≠ ∅)
5843, 57eqnetrd 2993 . 2 ((𝜑𝑥 𝐽) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
59 cuspusp 24193 . . . 4 (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp)
6044, 59syl 17 . . 3 (𝜑𝑊 ∈ UnifSp)
6111uspreg 24167 . . 3 ((𝑊 ∈ UnifSp ∧ 𝐾 ∈ Haus) → 𝐾 ∈ Reg)
6260, 7, 61syl2anc 584 . 2 (𝜑𝐾 ∈ Reg)
631, 2, 6, 7, 15, 20, 22, 58, 62cnextcn 23960 1 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  wss 3916  c0 4298  {csn 4591   cuni 4873  wf 6509  cfv 6513  (class class class)co 7389  Basecbs 17185  t crest 17389  TopOpenctopn 17390  fBascfbas 21258  Topctop 22786  TopOnctopon 22803  TopSpctps 22825  clsccl 22911  neicnei 22990   Cn ccn 23117  Hauscha 23201  Regcreg 23202  Filcfil 23738   FilMap cfm 23826   fLim cflim 23827   fLimf cflf 23828  CnExtccnext 23952  UnifStcuss 24147  UnifSpcusp 24148  CauFiluccfilu 24179  CUnifSpccusp 24190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-1o 8436  df-2o 8437  df-map 8803  df-pm 8804  df-en 8921  df-fin 8924  df-fi 9368  df-rest 17391  df-topgen 17412  df-fbas 21267  df-fg 21268  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-cld 22912  df-ntr 22913  df-cls 22914  df-nei 22991  df-cn 23120  df-cnp 23121  df-haus 23208  df-reg 23209  df-tx 23455  df-fil 23739  df-fm 23831  df-flim 23832  df-flf 23833  df-cnext 23953  df-ust 24094  df-utop 24125  df-usp 24151  df-cusp 24191
This theorem is referenced by:  ucnextcn  24197
  Copyright terms: Public domain W3C validator