MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextucn Structured version   Visualization version   GIF version

Theorem cnextucn 23808
Description: Extension by continuity. Proposition 11 of [BourbakiTop1] p. II.20. Given a topology 𝐽 on 𝑋, a subset 𝐴 dense in 𝑋, this states a condition for 𝐹 from 𝐴 to a space π‘Œ Hausdorff and complete to be extensible by continuity. (Contributed by Thierry Arnoux, 4-Dec-2017.)
Hypotheses
Ref Expression
cnextucn.x 𝑋 = (Baseβ€˜π‘‰)
cnextucn.y π‘Œ = (Baseβ€˜π‘Š)
cnextucn.j 𝐽 = (TopOpenβ€˜π‘‰)
cnextucn.k 𝐾 = (TopOpenβ€˜π‘Š)
cnextucn.u π‘ˆ = (UnifStβ€˜π‘Š)
cnextucn.v (πœ‘ β†’ 𝑉 ∈ TopSp)
cnextucn.t (πœ‘ β†’ π‘Š ∈ TopSp)
cnextucn.w (πœ‘ β†’ π‘Š ∈ CUnifSp)
cnextucn.h (πœ‘ β†’ 𝐾 ∈ Haus)
cnextucn.a (πœ‘ β†’ 𝐴 βŠ† 𝑋)
cnextucn.f (πœ‘ β†’ 𝐹:π΄βŸΆπ‘Œ)
cnextucn.c (πœ‘ β†’ ((clsβ€˜π½)β€˜π΄) = 𝑋)
cnextucn.l ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ ((π‘Œ FilMap 𝐹)β€˜(((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴)) ∈ (CauFiluβ€˜π‘ˆ))
Assertion
Ref Expression
cnextucn (πœ‘ β†’ ((𝐽CnExt𝐾)β€˜πΉ) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐹   π‘₯,𝐽   π‘₯,𝐾   πœ‘,π‘₯
Allowed substitution hints:   π‘ˆ(π‘₯)   𝑉(π‘₯)   π‘Š(π‘₯)   𝑋(π‘₯)   π‘Œ(π‘₯)

Proof of Theorem cnextucn
StepHypRef Expression
1 eqid 2733 . 2 βˆͺ 𝐽 = βˆͺ 𝐽
2 eqid 2733 . 2 βˆͺ 𝐾 = βˆͺ 𝐾
3 cnextucn.v . . 3 (πœ‘ β†’ 𝑉 ∈ TopSp)
4 cnextucn.j . . . 4 𝐽 = (TopOpenβ€˜π‘‰)
54tpstop 22439 . . 3 (𝑉 ∈ TopSp β†’ 𝐽 ∈ Top)
63, 5syl 17 . 2 (πœ‘ β†’ 𝐽 ∈ Top)
7 cnextucn.h . 2 (πœ‘ β†’ 𝐾 ∈ Haus)
8 cnextucn.f . . 3 (πœ‘ β†’ 𝐹:π΄βŸΆπ‘Œ)
9 cnextucn.t . . . . 5 (πœ‘ β†’ π‘Š ∈ TopSp)
10 cnextucn.y . . . . . 6 π‘Œ = (Baseβ€˜π‘Š)
11 cnextucn.k . . . . . 6 𝐾 = (TopOpenβ€˜π‘Š)
1210, 11tpsuni 22438 . . . . 5 (π‘Š ∈ TopSp β†’ π‘Œ = βˆͺ 𝐾)
139, 12syl 17 . . . 4 (πœ‘ β†’ π‘Œ = βˆͺ 𝐾)
1413feq3d 6705 . . 3 (πœ‘ β†’ (𝐹:π΄βŸΆπ‘Œ ↔ 𝐹:𝐴⟢βˆͺ 𝐾))
158, 14mpbid 231 . 2 (πœ‘ β†’ 𝐹:𝐴⟢βˆͺ 𝐾)
16 cnextucn.a . . 3 (πœ‘ β†’ 𝐴 βŠ† 𝑋)
17 cnextucn.x . . . . 5 𝑋 = (Baseβ€˜π‘‰)
1817, 4tpsuni 22438 . . . 4 (𝑉 ∈ TopSp β†’ 𝑋 = βˆͺ 𝐽)
193, 18syl 17 . . 3 (πœ‘ β†’ 𝑋 = βˆͺ 𝐽)
2016, 19sseqtrd 4023 . 2 (πœ‘ β†’ 𝐴 βŠ† βˆͺ 𝐽)
21 cnextucn.c . . 3 (πœ‘ β†’ ((clsβ€˜π½)β€˜π΄) = 𝑋)
2221, 19eqtrd 2773 . 2 (πœ‘ β†’ ((clsβ€˜π½)β€˜π΄) = βˆͺ 𝐽)
2310, 11istps 22436 . . . . . 6 (π‘Š ∈ TopSp ↔ 𝐾 ∈ (TopOnβ€˜π‘Œ))
249, 23sylib 217 . . . . 5 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
2524adantr 482 . . . 4 ((πœ‘ ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
2619eleq2d 2820 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↔ π‘₯ ∈ βˆͺ 𝐽))
2726biimpar 479 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ π‘₯ ∈ 𝑋)
2821adantr 482 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ ((clsβ€˜π½)β€˜π΄) = 𝑋)
2927, 28eleqtrrd 2837 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ π‘₯ ∈ ((clsβ€˜π½)β€˜π΄))
30 toptopon2 22420 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
316, 30sylib 217 . . . . . . . 8 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
32 fveq2 6892 . . . . . . . . . 10 (𝑋 = βˆͺ 𝐽 β†’ (TopOnβ€˜π‘‹) = (TopOnβ€˜βˆͺ 𝐽))
3332eleq2d 2820 . . . . . . . . 9 (𝑋 = βˆͺ 𝐽 β†’ (𝐽 ∈ (TopOnβ€˜π‘‹) ↔ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽)))
3419, 33syl 17 . . . . . . . 8 (πœ‘ β†’ (𝐽 ∈ (TopOnβ€˜π‘‹) ↔ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽)))
3531, 34mpbird 257 . . . . . . 7 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
3635adantr 482 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
3716adantr 482 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ 𝐴 βŠ† 𝑋)
38 trnei 23396 . . . . . 6 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋 ∧ π‘₯ ∈ 𝑋) β†’ (π‘₯ ∈ ((clsβ€˜π½)β€˜π΄) ↔ (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴) ∈ (Filβ€˜π΄)))
3936, 37, 27, 38syl3anc 1372 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ (π‘₯ ∈ ((clsβ€˜π½)β€˜π΄) ↔ (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴) ∈ (Filβ€˜π΄)))
4029, 39mpbid 231 . . . 4 ((πœ‘ ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴) ∈ (Filβ€˜π΄))
418adantr 482 . . . 4 ((πœ‘ ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ 𝐹:π΄βŸΆπ‘Œ)
42 flfval 23494 . . . 4 ((𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴) ∈ (Filβ€˜π΄) ∧ 𝐹:π΄βŸΆπ‘Œ) β†’ ((𝐾 fLimf (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))β€˜πΉ) = (𝐾 fLim ((π‘Œ FilMap 𝐹)β€˜(((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))))
4325, 40, 41, 42syl3anc 1372 . . 3 ((πœ‘ ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ ((𝐾 fLimf (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))β€˜πΉ) = (𝐾 fLim ((π‘Œ FilMap 𝐹)β€˜(((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))))
44 cnextucn.w . . . . 5 (πœ‘ β†’ π‘Š ∈ CUnifSp)
4544adantr 482 . . . 4 ((πœ‘ ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ π‘Š ∈ CUnifSp)
46 cnextucn.l . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ ((π‘Œ FilMap 𝐹)β€˜(((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴)) ∈ (CauFiluβ€˜π‘ˆ))
4727, 46syldan 592 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ ((π‘Œ FilMap 𝐹)β€˜(((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴)) ∈ (CauFiluβ€˜π‘ˆ))
48 cnextucn.u . . . . . 6 π‘ˆ = (UnifStβ€˜π‘Š)
4948fveq2i 6895 . . . . 5 (CauFiluβ€˜π‘ˆ) = (CauFiluβ€˜(UnifStβ€˜π‘Š))
5047, 49eleqtrdi 2844 . . . 4 ((πœ‘ ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ ((π‘Œ FilMap 𝐹)β€˜(((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴)) ∈ (CauFiluβ€˜(UnifStβ€˜π‘Š)))
5110fvexi 6906 . . . . 5 π‘Œ ∈ V
52 filfbas 23352 . . . . . 6 ((((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴) ∈ (Filβ€˜π΄) β†’ (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴) ∈ (fBasβ€˜π΄))
5340, 52syl 17 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴) ∈ (fBasβ€˜π΄))
54 fmfil 23448 . . . . 5 ((π‘Œ ∈ V ∧ (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴) ∈ (fBasβ€˜π΄) ∧ 𝐹:π΄βŸΆπ‘Œ) β†’ ((π‘Œ FilMap 𝐹)β€˜(((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴)) ∈ (Filβ€˜π‘Œ))
5551, 53, 41, 54mp3an2i 1467 . . . 4 ((πœ‘ ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ ((π‘Œ FilMap 𝐹)β€˜(((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴)) ∈ (Filβ€˜π‘Œ))
5610, 11cuspcvg 23806 . . . 4 ((π‘Š ∈ CUnifSp ∧ ((π‘Œ FilMap 𝐹)β€˜(((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴)) ∈ (CauFiluβ€˜(UnifStβ€˜π‘Š)) ∧ ((π‘Œ FilMap 𝐹)β€˜(((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴)) ∈ (Filβ€˜π‘Œ)) β†’ (𝐾 fLim ((π‘Œ FilMap 𝐹)β€˜(((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))) β‰  βˆ…)
5745, 50, 55, 56syl3anc 1372 . . 3 ((πœ‘ ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ (𝐾 fLim ((π‘Œ FilMap 𝐹)β€˜(((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))) β‰  βˆ…)
5843, 57eqnetrd 3009 . 2 ((πœ‘ ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ ((𝐾 fLimf (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))β€˜πΉ) β‰  βˆ…)
59 cuspusp 23805 . . . 4 (π‘Š ∈ CUnifSp β†’ π‘Š ∈ UnifSp)
6044, 59syl 17 . . 3 (πœ‘ β†’ π‘Š ∈ UnifSp)
6111uspreg 23779 . . 3 ((π‘Š ∈ UnifSp ∧ 𝐾 ∈ Haus) β†’ 𝐾 ∈ Reg)
6260, 7, 61syl2anc 585 . 2 (πœ‘ β†’ 𝐾 ∈ Reg)
631, 2, 6, 7, 15, 20, 22, 58, 62cnextcn 23571 1 (πœ‘ β†’ ((𝐽CnExt𝐾)β€˜πΉ) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  Vcvv 3475   βŠ† wss 3949  βˆ…c0 4323  {csn 4629  βˆͺ cuni 4909  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144   β†Ύt crest 17366  TopOpenctopn 17367  fBascfbas 20932  Topctop 22395  TopOnctopon 22412  TopSpctps 22434  clsccl 22522  neicnei 22601   Cn ccn 22728  Hauscha 22812  Regcreg 22813  Filcfil 23349   FilMap cfm 23437   fLim cflim 23438   fLimf cflf 23439  CnExtccnext 23563  UnifStcuss 23758  UnifSpcusp 23759  CauFiluccfilu 23791  CUnifSpccusp 23802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-1o 8466  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-fin 8943  df-fi 9406  df-rest 17368  df-topgen 17389  df-fbas 20941  df-fg 20942  df-top 22396  df-topon 22413  df-topsp 22435  df-bases 22449  df-cld 22523  df-ntr 22524  df-cls 22525  df-nei 22602  df-cn 22731  df-cnp 22732  df-haus 22819  df-reg 22820  df-tx 23066  df-fil 23350  df-fm 23442  df-flim 23443  df-flf 23444  df-cnext 23564  df-ust 23705  df-utop 23736  df-usp 23762  df-cusp 23803
This theorem is referenced by:  ucnextcn  23809
  Copyright terms: Public domain W3C validator