MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextucn Structured version   Visualization version   GIF version

Theorem cnextucn 22906
Description: Extension by continuity. Proposition 11 of [BourbakiTop1] p. II.20. Given a topology 𝐽 on 𝑋, a subset 𝐴 dense in 𝑋, this states a condition for 𝐹 from 𝐴 to a space 𝑌 Hausdorff and complete to be extensible by continuity. (Contributed by Thierry Arnoux, 4-Dec-2017.)
Hypotheses
Ref Expression
cnextucn.x 𝑋 = (Base‘𝑉)
cnextucn.y 𝑌 = (Base‘𝑊)
cnextucn.j 𝐽 = (TopOpen‘𝑉)
cnextucn.k 𝐾 = (TopOpen‘𝑊)
cnextucn.u 𝑈 = (UnifSt‘𝑊)
cnextucn.v (𝜑𝑉 ∈ TopSp)
cnextucn.t (𝜑𝑊 ∈ TopSp)
cnextucn.w (𝜑𝑊 ∈ CUnifSp)
cnextucn.h (𝜑𝐾 ∈ Haus)
cnextucn.a (𝜑𝐴𝑋)
cnextucn.f (𝜑𝐹:𝐴𝑌)
cnextucn.c (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
cnextucn.l ((𝜑𝑥𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu𝑈))
Assertion
Ref Expression
cnextucn (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥
Allowed substitution hints:   𝑈(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem cnextucn
StepHypRef Expression
1 eqid 2821 . 2 𝐽 = 𝐽
2 eqid 2821 . 2 𝐾 = 𝐾
3 cnextucn.v . . 3 (𝜑𝑉 ∈ TopSp)
4 cnextucn.j . . . 4 𝐽 = (TopOpen‘𝑉)
54tpstop 21539 . . 3 (𝑉 ∈ TopSp → 𝐽 ∈ Top)
63, 5syl 17 . 2 (𝜑𝐽 ∈ Top)
7 cnextucn.h . 2 (𝜑𝐾 ∈ Haus)
8 cnextucn.f . . 3 (𝜑𝐹:𝐴𝑌)
9 cnextucn.t . . . . 5 (𝜑𝑊 ∈ TopSp)
10 cnextucn.y . . . . . 6 𝑌 = (Base‘𝑊)
11 cnextucn.k . . . . . 6 𝐾 = (TopOpen‘𝑊)
1210, 11tpsuni 21538 . . . . 5 (𝑊 ∈ TopSp → 𝑌 = 𝐾)
139, 12syl 17 . . . 4 (𝜑𝑌 = 𝐾)
1413feq3d 6496 . . 3 (𝜑 → (𝐹:𝐴𝑌𝐹:𝐴 𝐾))
158, 14mpbid 234 . 2 (𝜑𝐹:𝐴 𝐾)
16 cnextucn.a . . 3 (𝜑𝐴𝑋)
17 cnextucn.x . . . . 5 𝑋 = (Base‘𝑉)
1817, 4tpsuni 21538 . . . 4 (𝑉 ∈ TopSp → 𝑋 = 𝐽)
193, 18syl 17 . . 3 (𝜑𝑋 = 𝐽)
2016, 19sseqtrd 4007 . 2 (𝜑𝐴 𝐽)
21 cnextucn.c . . 3 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
2221, 19eqtrd 2856 . 2 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐽)
2310, 11istps 21536 . . . . . 6 (𝑊 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘𝑌))
249, 23sylib 220 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
2524adantr 483 . . . 4 ((𝜑𝑥 𝐽) → 𝐾 ∈ (TopOn‘𝑌))
2619eleq2d 2898 . . . . . . 7 (𝜑 → (𝑥𝑋𝑥 𝐽))
2726biimpar 480 . . . . . 6 ((𝜑𝑥 𝐽) → 𝑥𝑋)
2821adantr 483 . . . . . 6 ((𝜑𝑥 𝐽) → ((cls‘𝐽)‘𝐴) = 𝑋)
2927, 28eleqtrrd 2916 . . . . 5 ((𝜑𝑥 𝐽) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
30 toptopon2 21520 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
316, 30sylib 220 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
32 fveq2 6665 . . . . . . . . . 10 (𝑋 = 𝐽 → (TopOn‘𝑋) = (TopOn‘ 𝐽))
3332eleq2d 2898 . . . . . . . . 9 (𝑋 = 𝐽 → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ (TopOn‘ 𝐽)))
3419, 33syl 17 . . . . . . . 8 (𝜑 → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ (TopOn‘ 𝐽)))
3531, 34mpbird 259 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
3635adantr 483 . . . . . 6 ((𝜑𝑥 𝐽) → 𝐽 ∈ (TopOn‘𝑋))
3716adantr 483 . . . . . 6 ((𝜑𝑥 𝐽) → 𝐴𝑋)
38 trnei 22494 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋𝑥𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3936, 37, 27, 38syl3anc 1367 . . . . 5 ((𝜑𝑥 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
4029, 39mpbid 234 . . . 4 ((𝜑𝑥 𝐽) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
418adantr 483 . . . 4 ((𝜑𝑥 𝐽) → 𝐹:𝐴𝑌)
42 flfval 22592 . . . 4 ((𝐾 ∈ (TopOn‘𝑌) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝑌) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴))))
4325, 40, 41, 42syl3anc 1367 . . 3 ((𝜑𝑥 𝐽) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴))))
44 cnextucn.w . . . . 5 (𝜑𝑊 ∈ CUnifSp)
4544adantr 483 . . . 4 ((𝜑𝑥 𝐽) → 𝑊 ∈ CUnifSp)
46 cnextucn.l . . . . . 6 ((𝜑𝑥𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu𝑈))
4727, 46syldan 593 . . . . 5 ((𝜑𝑥 𝐽) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu𝑈))
48 cnextucn.u . . . . . 6 𝑈 = (UnifSt‘𝑊)
4948fveq2i 6668 . . . . 5 (CauFilu𝑈) = (CauFilu‘(UnifSt‘𝑊))
5047, 49eleqtrdi 2923 . . . 4 ((𝜑𝑥 𝐽) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu‘(UnifSt‘𝑊)))
5110fvexi 6679 . . . . 5 𝑌 ∈ V
52 filfbas 22450 . . . . . 6 ((((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴))
5340, 52syl 17 . . . . 5 ((𝜑𝑥 𝐽) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴))
54 fmfil 22546 . . . . 5 ((𝑌 ∈ V ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴) ∧ 𝐹:𝐴𝑌) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (Fil‘𝑌))
5551, 53, 41, 54mp3an2i 1462 . . . 4 ((𝜑𝑥 𝐽) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (Fil‘𝑌))
5610, 11cuspcvg 22904 . . . 4 ((𝑊 ∈ CUnifSp ∧ ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu‘(UnifSt‘𝑊)) ∧ ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (Fil‘𝑌)) → (𝐾 fLim ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴))) ≠ ∅)
5745, 50, 55, 56syl3anc 1367 . . 3 ((𝜑𝑥 𝐽) → (𝐾 fLim ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴))) ≠ ∅)
5843, 57eqnetrd 3083 . 2 ((𝜑𝑥 𝐽) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
59 cuspusp 22903 . . . 4 (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp)
6044, 59syl 17 . . 3 (𝜑𝑊 ∈ UnifSp)
6111uspreg 22877 . . 3 ((𝑊 ∈ UnifSp ∧ 𝐾 ∈ Haus) → 𝐾 ∈ Reg)
6260, 7, 61syl2anc 586 . 2 (𝜑𝐾 ∈ Reg)
631, 2, 6, 7, 15, 20, 22, 58, 62cnextcn 22669 1 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  Vcvv 3495  wss 3936  c0 4291  {csn 4561   cuni 4832  wf 6346  cfv 6350  (class class class)co 7150  Basecbs 16477  t crest 16688  TopOpenctopn 16689  fBascfbas 20527  Topctop 21495  TopOnctopon 21512  TopSpctps 21534  clsccl 21620  neicnei 21699   Cn ccn 21826  Hauscha 21910  Regcreg 21911  Filcfil 22447   FilMap cfm 22535   fLim cflim 22536   fLimf cflf 22537  CnExtccnext 22661  UnifStcuss 22856  UnifSpcusp 22857  CauFiluccfilu 22889  CUnifSpccusp 22900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-fin 8507  df-fi 8869  df-rest 16690  df-topgen 16711  df-fbas 20536  df-fg 20537  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-cn 21829  df-cnp 21830  df-haus 21917  df-reg 21918  df-tx 22164  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-cnext 22662  df-ust 22803  df-utop 22834  df-usp 22860  df-cusp 22901
This theorem is referenced by:  ucnextcn  22907
  Copyright terms: Public domain W3C validator