Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrhre Structured version   Visualization version   GIF version

Theorem rrhre 30906
Description: The ℝHom homomorphism for the real numbers structure is the identity. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Assertion
Ref Expression
rrhre (ℝHom‘ℝfld) = ( I ↾ ℝ)

Proof of Theorem rrhre
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniretop 23077 . . 3 ℝ = (topGen‘ran (,))
2 rehaus 23113 . . . 4 (topGen‘ran (,)) ∈ Haus
32a1i 11 . . 3 (⊤ → (topGen‘ran (,)) ∈ Haus)
4 rerrext 30894 . . . 4 fld ∈ ℝExt
5 eqid 2778 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
6 retopn 23688 . . . . 5 (topGen‘ran (,)) = (TopOpen‘ℝfld)
75, 6rrhcne 30898 . . . 4 (ℝfld ∈ ℝExt → (ℝHom‘ℝfld) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
84, 7mp1i 13 . . 3 (⊤ → (ℝHom‘ℝfld) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
9 retop 23076 . . . . . 6 (topGen‘ran (,)) ∈ Top
101toptopon 21232 . . . . . 6 ((topGen‘ran (,)) ∈ Top ↔ (topGen‘ran (,)) ∈ (TopOn‘ℝ))
119, 10mpbi 222 . . . . 5 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
12 idcn 21572 . . . . 5 ((topGen‘ran (,)) ∈ (TopOn‘ℝ) → ( I ↾ ℝ) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
1311, 12ax-mp 5 . . . 4 ( I ↾ ℝ) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,)))
1413a1i 11 . . 3 (⊤ → ( I ↾ ℝ) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
159a1i 11 . . . . . . 7 (⊤ → (topGen‘ran (,)) ∈ Top)
16 f1oi 6483 . . . . . . . . . 10 ( I ↾ ℚ):ℚ–1-1-onto→ℚ
17 f1of 6446 . . . . . . . . . 10 (( I ↾ ℚ):ℚ–1-1-onto→ℚ → ( I ↾ ℚ):ℚ⟶ℚ)
1816, 17ax-mp 5 . . . . . . . . 9 ( I ↾ ℚ):ℚ⟶ℚ
19 qssre 12176 . . . . . . . . 9 ℚ ⊆ ℝ
20 fss 6359 . . . . . . . . 9 ((( I ↾ ℚ):ℚ⟶ℚ ∧ ℚ ⊆ ℝ) → ( I ↾ ℚ):ℚ⟶ℝ)
2118, 19, 20mp2an 679 . . . . . . . 8 ( I ↾ ℚ):ℚ⟶ℝ
2221a1i 11 . . . . . . 7 (⊤ → ( I ↾ ℚ):ℚ⟶ℝ)
2319a1i 11 . . . . . . 7 (⊤ → ℚ ⊆ ℝ)
24 qdensere 23084 . . . . . . . 8 ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ
2524a1i 11 . . . . . . 7 (⊤ → ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ)
269a1i 11 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → (topGen‘ran (,)) ∈ Top)
27 simplr 756 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → 𝑎 ∈ (topGen‘ran (,)))
28 simpr 477 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → 𝑥𝑎)
29 opnneip 21434 . . . . . . . . . . . . . . . 16 (((topGen‘ran (,)) ∈ Top ∧ 𝑎 ∈ (topGen‘ran (,)) ∧ 𝑥𝑎) → 𝑎 ∈ ((nei‘(topGen‘ran (,)))‘{𝑥}))
3026, 27, 28, 29syl3anc 1351 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → 𝑎 ∈ ((nei‘(topGen‘ran (,)))‘{𝑥}))
31 fvex 6514 . . . . . . . . . . . . . . . 16 ((nei‘(topGen‘ran (,)))‘{𝑥}) ∈ V
32 qex 12178 . . . . . . . . . . . . . . . 16 ℚ ∈ V
33 elrestr 16561 . . . . . . . . . . . . . . . 16 ((((nei‘(topGen‘ran (,)))‘{𝑥}) ∈ V ∧ ℚ ∈ V ∧ 𝑎 ∈ ((nei‘(topGen‘ran (,)))‘{𝑥})) → (𝑎 ∩ ℚ) ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))
3431, 32, 33mp3an12 1430 . . . . . . . . . . . . . . 15 (𝑎 ∈ ((nei‘(topGen‘ran (,)))‘{𝑥}) → (𝑎 ∩ ℚ) ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))
3530, 34syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → (𝑎 ∩ ℚ) ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))
36 inss2 4095 . . . . . . . . . . . . . . . . 17 (𝑎 ∩ ℚ) ⊆ ℚ
37 resiima 5786 . . . . . . . . . . . . . . . . 17 ((𝑎 ∩ ℚ) ⊆ ℚ → (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) = (𝑎 ∩ ℚ))
3836, 37ax-mp 5 . . . . . . . . . . . . . . . 16 (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) = (𝑎 ∩ ℚ)
39 inss1 4094 . . . . . . . . . . . . . . . 16 (𝑎 ∩ ℚ) ⊆ 𝑎
4038, 39eqsstri 3893 . . . . . . . . . . . . . . 15 (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) ⊆ 𝑎
4140a1i 11 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) ⊆ 𝑎)
42 imaeq2 5768 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑎 ∩ ℚ) → (( I ↾ ℚ) “ 𝑏) = (( I ↾ ℚ) “ (𝑎 ∩ ℚ)))
4342sseq1d 3890 . . . . . . . . . . . . . . 15 (𝑏 = (𝑎 ∩ ℚ) → ((( I ↾ ℚ) “ 𝑏) ⊆ 𝑎 ↔ (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) ⊆ 𝑎))
4443rspcev 3535 . . . . . . . . . . . . . 14 (((𝑎 ∩ ℚ) ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∧ (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) ⊆ 𝑎) → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎)
4535, 41, 44syl2anc 576 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎)
4645ex 405 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) → (𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))
4746ralrimiva 3132 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))
4847ancli 541 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥 ∈ ℝ ∧ ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎)))
4924eleq2i 2857 . . . . . . . . . . . . 13 (𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ) ↔ 𝑥 ∈ ℝ)
5049biimpri 220 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ))
51 trnei 22207 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ℚ ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ) ↔ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ)))
5211, 19, 51mp3an12 1430 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ) ↔ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ)))
5350, 52mpbid 224 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ))
54 isflf 22308 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ) ∧ ( I ↾ ℚ):ℚ⟶ℝ) → (𝑥 ∈ (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ↔ (𝑥 ∈ ℝ ∧ ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))))
5511, 21, 54mp3an13 1431 . . . . . . . . . . 11 ((((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ) → (𝑥 ∈ (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ↔ (𝑥 ∈ ℝ ∧ ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))))
5653, 55syl 17 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥 ∈ (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ↔ (𝑥 ∈ ℝ ∧ ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))))
5748, 56mpbird 249 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)))
5857ne0d 4189 . . . . . . . 8 (𝑥 ∈ ℝ → (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ≠ ∅)
5958adantl 474 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ≠ ∅)
60 recusp 23691 . . . . . . . . . 10 fld ∈ CUnifSp
61 cuspusp 22615 . . . . . . . . . 10 (ℝfld ∈ CUnifSp → ℝfld ∈ UnifSp)
6260, 61ax-mp 5 . . . . . . . . 9 fld ∈ UnifSp
636uspreg 22589 . . . . . . . . 9 ((ℝfld ∈ UnifSp ∧ (topGen‘ran (,)) ∈ Haus) → (topGen‘ran (,)) ∈ Reg)
6462, 2, 63mp2an 679 . . . . . . . 8 (topGen‘ran (,)) ∈ Reg
6564a1i 11 . . . . . . 7 (⊤ → (topGen‘ran (,)) ∈ Reg)
66 resabs1 5730 . . . . . . . . . 10 (ℚ ⊆ ℝ → (( I ↾ ℝ) ↾ ℚ) = ( I ↾ ℚ))
6719, 66ax-mp 5 . . . . . . . . 9 (( I ↾ ℝ) ↾ ℚ) = ( I ↾ ℚ)
681cnrest 21600 . . . . . . . . . 10 ((( I ↾ ℝ) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))) ∧ ℚ ⊆ ℝ) → (( I ↾ ℝ) ↾ ℚ) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (topGen‘ran (,))))
6913, 19, 68mp2an 679 . . . . . . . . 9 (( I ↾ ℝ) ↾ ℚ) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (topGen‘ran (,)))
7067, 69eqeltrri 2863 . . . . . . . 8 ( I ↾ ℚ) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (topGen‘ran (,)))
7170a1i 11 . . . . . . 7 (⊤ → ( I ↾ ℚ) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (topGen‘ran (,))))
721, 1, 15, 3, 22, 23, 25, 59, 65, 71cnextfres1 22383 . . . . . 6 (⊤ → ((((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ)) ↾ ℚ) = ( I ↾ ℚ))
7372mptru 1514 . . . . 5 ((((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ)) ↾ ℚ) = ( I ↾ ℚ)
74 recms 23689 . . . . . . . . 9 fld ∈ CMetSp
7574elexi 3434 . . . . . . . 8 fld ∈ V
765, 6rrhval 30881 . . . . . . . 8 (ℝfld ∈ V → (ℝHom‘ℝfld) = (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘(ℚHom‘ℝfld)))
7775, 76ax-mp 5 . . . . . . 7 (ℝHom‘ℝfld) = (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘(ℚHom‘ℝfld))
78 qqhre 30905 . . . . . . . 8 (ℚHom‘ℝfld) = ( I ↾ ℚ)
7978fveq2i 6504 . . . . . . 7 (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘(ℚHom‘ℝfld)) = (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ))
8077, 79eqtri 2802 . . . . . 6 (ℝHom‘ℝfld) = (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ))
8180reseq1i 5692 . . . . 5 ((ℝHom‘ℝfld) ↾ ℚ) = ((((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ)) ↾ ℚ)
8273, 81, 673eqtr4i 2812 . . . 4 ((ℝHom‘ℝfld) ↾ ℚ) = (( I ↾ ℝ) ↾ ℚ)
8382a1i 11 . . 3 (⊤ → ((ℝHom‘ℝfld) ↾ ℚ) = (( I ↾ ℝ) ↾ ℚ))
841, 3, 8, 14, 83, 23, 25hauseqcn 30782 . 2 (⊤ → (ℝHom‘ℝfld) = ( I ↾ ℝ))
8584mptru 1514 1 (ℝHom‘ℝfld) = ( I ↾ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wtru 1508  wcel 2050  wne 2967  wral 3088  wrex 3089  Vcvv 3415  cin 3830  wss 3831  c0 4180  {csn 4442   I cid 5312  ran crn 5409  cres 5410  cima 5411  wf 6186  1-1-ontowf1o 6189  cfv 6190  (class class class)co 6978  cr 10336  cq 12165  (,)cioo 12557  t crest 16553  topGenctg 16570  fldcrefld 20453  Topctop 21208  TopOnctopon 21225  clsccl 21333  neicnei 21412   Cn ccn 21539  Hauscha 21623  Regcreg 21624  Filcfil 22160   fLimf cflf 22250  CnExtccnext 22374  UnifSpcusp 22569  CUnifSpccusp 22612  CMetSpccms 23641  ℚHomcqqh 30857  ℝHomcrrh 30878   ℝExt crrext 30879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415  ax-addf 10416  ax-mulf 10417
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-iin 4796  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-se 5368  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-isom 6199  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-of 7229  df-om 7399  df-1st 7503  df-2nd 7504  df-supp 7636  df-tpos 7697  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-2o 7908  df-oadd 7911  df-er 8091  df-map 8210  df-pm 8211  df-ixp 8262  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-fsupp 8631  df-fi 8672  df-sup 8703  df-inf 8704  df-oi 8771  df-card 9164  df-cda 9390  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-2 11506  df-3 11507  df-4 11508  df-5 11509  df-6 11510  df-7 11511  df-8 11512  df-9 11513  df-n0 11711  df-z 11797  df-dec 11915  df-uz 12062  df-q 12166  df-rp 12208  df-xneg 12327  df-xadd 12328  df-xmul 12329  df-ioo 12561  df-ico 12563  df-icc 12564  df-fz 12712  df-fzo 12853  df-fl 12980  df-mod 13056  df-seq 13188  df-exp 13248  df-hash 13509  df-cj 14322  df-re 14323  df-im 14324  df-sqrt 14458  df-abs 14459  df-dvds 15471  df-gcd 15707  df-numer 15934  df-denom 15935  df-gz 16125  df-struct 16344  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-ress 16350  df-plusg 16437  df-mulr 16438  df-starv 16439  df-sca 16440  df-vsca 16441  df-ip 16442  df-tset 16443  df-ple 16444  df-ds 16446  df-unif 16447  df-hom 16448  df-cco 16449  df-rest 16555  df-topn 16556  df-0g 16574  df-gsum 16575  df-topgen 16576  df-pt 16577  df-prds 16580  df-xrs 16634  df-qtop 16639  df-imas 16640  df-xps 16642  df-mre 16718  df-mrc 16719  df-acs 16721  df-proset 17399  df-poset 17417  df-plt 17429  df-toset 17505  df-ps 17671  df-tsr 17672  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-mhm 17806  df-submnd 17807  df-grp 17897  df-minusg 17898  df-sbg 17899  df-mulg 18015  df-subg 18063  df-ghm 18130  df-cntz 18221  df-od 18421  df-cmn 18671  df-abl 18672  df-mgp 18966  df-ur 18978  df-ring 19025  df-cring 19026  df-oppr 19099  df-dvdsr 19117  df-unit 19118  df-invr 19148  df-dvr 19159  df-rnghom 19193  df-drng 19230  df-field 19231  df-subrg 19259  df-abv 19313  df-lmod 19361  df-nzr 19755  df-psmet 20242  df-xmet 20243  df-met 20244  df-bl 20245  df-mopn 20246  df-fbas 20247  df-fg 20248  df-metu 20249  df-cnfld 20251  df-zring 20323  df-zrh 20356  df-zlm 20357  df-chr 20358  df-refld 20454  df-top 21209  df-topon 21226  df-topsp 21248  df-bases 21261  df-cld 21334  df-ntr 21335  df-cls 21336  df-nei 21413  df-cn 21542  df-cnp 21543  df-haus 21630  df-reg 21631  df-cmp 21702  df-tx 21877  df-hmeo 22070  df-fil 22161  df-fm 22253  df-flim 22254  df-flf 22255  df-fcls 22256  df-cnext 22375  df-ust 22515  df-utop 22546  df-uss 22571  df-usp 22572  df-ucn 22591  df-cfilu 22602  df-cusp 22613  df-xms 22636  df-ms 22637  df-tms 22638  df-nm 22898  df-ngp 22899  df-nrg 22901  df-nlm 22902  df-cncf 23192  df-cfil 23564  df-cmet 23566  df-cms 23644  df-omnd 30418  df-ogrp 30419  df-orng 30549  df-ofld 30550  df-qqh 30858  df-rrh 30880  df-rrext 30884
This theorem is referenced by:  sitmcl  31254
  Copyright terms: Public domain W3C validator