Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrhre Structured version   Visualization version   GIF version

Theorem rrhre 31257
Description: The ℝHom homomorphism for the real numbers structure is the identity. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Assertion
Ref Expression
rrhre (ℝHom‘ℝfld) = ( I ↾ ℝ)

Proof of Theorem rrhre
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniretop 23365 . . 3 ℝ = (topGen‘ran (,))
2 rehaus 23401 . . . 4 (topGen‘ran (,)) ∈ Haus
32a1i 11 . . 3 (⊤ → (topGen‘ran (,)) ∈ Haus)
4 rerrext 31245 . . . 4 fld ∈ ℝExt
5 eqid 2821 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
6 retopn 23976 . . . . 5 (topGen‘ran (,)) = (TopOpen‘ℝfld)
75, 6rrhcne 31249 . . . 4 (ℝfld ∈ ℝExt → (ℝHom‘ℝfld) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
84, 7mp1i 13 . . 3 (⊤ → (ℝHom‘ℝfld) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
9 retop 23364 . . . . . 6 (topGen‘ran (,)) ∈ Top
101toptopon 21519 . . . . . 6 ((topGen‘ran (,)) ∈ Top ↔ (topGen‘ran (,)) ∈ (TopOn‘ℝ))
119, 10mpbi 232 . . . . 5 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
12 idcn 21859 . . . . 5 ((topGen‘ran (,)) ∈ (TopOn‘ℝ) → ( I ↾ ℝ) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
1311, 12ax-mp 5 . . . 4 ( I ↾ ℝ) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,)))
1413a1i 11 . . 3 (⊤ → ( I ↾ ℝ) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
159a1i 11 . . . . . . 7 (⊤ → (topGen‘ran (,)) ∈ Top)
16 f1oi 6647 . . . . . . . . . 10 ( I ↾ ℚ):ℚ–1-1-onto→ℚ
17 f1of 6610 . . . . . . . . . 10 (( I ↾ ℚ):ℚ–1-1-onto→ℚ → ( I ↾ ℚ):ℚ⟶ℚ)
1816, 17ax-mp 5 . . . . . . . . 9 ( I ↾ ℚ):ℚ⟶ℚ
19 qssre 12352 . . . . . . . . 9 ℚ ⊆ ℝ
20 fss 6522 . . . . . . . . 9 ((( I ↾ ℚ):ℚ⟶ℚ ∧ ℚ ⊆ ℝ) → ( I ↾ ℚ):ℚ⟶ℝ)
2118, 19, 20mp2an 690 . . . . . . . 8 ( I ↾ ℚ):ℚ⟶ℝ
2221a1i 11 . . . . . . 7 (⊤ → ( I ↾ ℚ):ℚ⟶ℝ)
2319a1i 11 . . . . . . 7 (⊤ → ℚ ⊆ ℝ)
24 qdensere 23372 . . . . . . . 8 ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ
2524a1i 11 . . . . . . 7 (⊤ → ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ)
269a1i 11 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → (topGen‘ran (,)) ∈ Top)
27 simplr 767 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → 𝑎 ∈ (topGen‘ran (,)))
28 simpr 487 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → 𝑥𝑎)
29 opnneip 21721 . . . . . . . . . . . . . . . 16 (((topGen‘ran (,)) ∈ Top ∧ 𝑎 ∈ (topGen‘ran (,)) ∧ 𝑥𝑎) → 𝑎 ∈ ((nei‘(topGen‘ran (,)))‘{𝑥}))
3026, 27, 28, 29syl3anc 1367 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → 𝑎 ∈ ((nei‘(topGen‘ran (,)))‘{𝑥}))
31 fvex 6678 . . . . . . . . . . . . . . . 16 ((nei‘(topGen‘ran (,)))‘{𝑥}) ∈ V
32 qex 12354 . . . . . . . . . . . . . . . 16 ℚ ∈ V
33 elrestr 16696 . . . . . . . . . . . . . . . 16 ((((nei‘(topGen‘ran (,)))‘{𝑥}) ∈ V ∧ ℚ ∈ V ∧ 𝑎 ∈ ((nei‘(topGen‘ran (,)))‘{𝑥})) → (𝑎 ∩ ℚ) ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))
3431, 32, 33mp3an12 1447 . . . . . . . . . . . . . . 15 (𝑎 ∈ ((nei‘(topGen‘ran (,)))‘{𝑥}) → (𝑎 ∩ ℚ) ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))
3530, 34syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → (𝑎 ∩ ℚ) ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))
36 inss2 4206 . . . . . . . . . . . . . . . . 17 (𝑎 ∩ ℚ) ⊆ ℚ
37 resiima 5939 . . . . . . . . . . . . . . . . 17 ((𝑎 ∩ ℚ) ⊆ ℚ → (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) = (𝑎 ∩ ℚ))
3836, 37ax-mp 5 . . . . . . . . . . . . . . . 16 (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) = (𝑎 ∩ ℚ)
39 inss1 4205 . . . . . . . . . . . . . . . 16 (𝑎 ∩ ℚ) ⊆ 𝑎
4038, 39eqsstri 4001 . . . . . . . . . . . . . . 15 (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) ⊆ 𝑎
4140a1i 11 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) ⊆ 𝑎)
42 imaeq2 5920 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑎 ∩ ℚ) → (( I ↾ ℚ) “ 𝑏) = (( I ↾ ℚ) “ (𝑎 ∩ ℚ)))
4342sseq1d 3998 . . . . . . . . . . . . . . 15 (𝑏 = (𝑎 ∩ ℚ) → ((( I ↾ ℚ) “ 𝑏) ⊆ 𝑎 ↔ (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) ⊆ 𝑎))
4443rspcev 3623 . . . . . . . . . . . . . 14 (((𝑎 ∩ ℚ) ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∧ (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) ⊆ 𝑎) → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎)
4535, 41, 44syl2anc 586 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎)
4645ex 415 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) → (𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))
4746ralrimiva 3182 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))
4847ancli 551 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥 ∈ ℝ ∧ ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎)))
4924eleq2i 2904 . . . . . . . . . . . . 13 (𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ) ↔ 𝑥 ∈ ℝ)
5049biimpri 230 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ))
51 trnei 22494 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ℚ ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ) ↔ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ)))
5211, 19, 51mp3an12 1447 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ) ↔ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ)))
5350, 52mpbid 234 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ))
54 isflf 22595 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ) ∧ ( I ↾ ℚ):ℚ⟶ℝ) → (𝑥 ∈ (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ↔ (𝑥 ∈ ℝ ∧ ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))))
5511, 21, 54mp3an13 1448 . . . . . . . . . . 11 ((((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ) → (𝑥 ∈ (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ↔ (𝑥 ∈ ℝ ∧ ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))))
5653, 55syl 17 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥 ∈ (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ↔ (𝑥 ∈ ℝ ∧ ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))))
5748, 56mpbird 259 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)))
5857ne0d 4301 . . . . . . . 8 (𝑥 ∈ ℝ → (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ≠ ∅)
5958adantl 484 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ≠ ∅)
60 recusp 23979 . . . . . . . . . 10 fld ∈ CUnifSp
61 cuspusp 22903 . . . . . . . . . 10 (ℝfld ∈ CUnifSp → ℝfld ∈ UnifSp)
6260, 61ax-mp 5 . . . . . . . . 9 fld ∈ UnifSp
636uspreg 22877 . . . . . . . . 9 ((ℝfld ∈ UnifSp ∧ (topGen‘ran (,)) ∈ Haus) → (topGen‘ran (,)) ∈ Reg)
6462, 2, 63mp2an 690 . . . . . . . 8 (topGen‘ran (,)) ∈ Reg
6564a1i 11 . . . . . . 7 (⊤ → (topGen‘ran (,)) ∈ Reg)
66 resabs1 5878 . . . . . . . . . 10 (ℚ ⊆ ℝ → (( I ↾ ℝ) ↾ ℚ) = ( I ↾ ℚ))
6719, 66ax-mp 5 . . . . . . . . 9 (( I ↾ ℝ) ↾ ℚ) = ( I ↾ ℚ)
681cnrest 21887 . . . . . . . . . 10 ((( I ↾ ℝ) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))) ∧ ℚ ⊆ ℝ) → (( I ↾ ℝ) ↾ ℚ) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (topGen‘ran (,))))
6913, 19, 68mp2an 690 . . . . . . . . 9 (( I ↾ ℝ) ↾ ℚ) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (topGen‘ran (,)))
7067, 69eqeltrri 2910 . . . . . . . 8 ( I ↾ ℚ) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (topGen‘ran (,)))
7170a1i 11 . . . . . . 7 (⊤ → ( I ↾ ℚ) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (topGen‘ran (,))))
721, 1, 15, 3, 22, 23, 25, 59, 65, 71cnextfres1 22670 . . . . . 6 (⊤ → ((((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ)) ↾ ℚ) = ( I ↾ ℚ))
7372mptru 1540 . . . . 5 ((((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ)) ↾ ℚ) = ( I ↾ ℚ)
74 recms 23977 . . . . . . . . 9 fld ∈ CMetSp
7574elexi 3514 . . . . . . . 8 fld ∈ V
765, 6rrhval 31232 . . . . . . . 8 (ℝfld ∈ V → (ℝHom‘ℝfld) = (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘(ℚHom‘ℝfld)))
7775, 76ax-mp 5 . . . . . . 7 (ℝHom‘ℝfld) = (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘(ℚHom‘ℝfld))
78 qqhre 31256 . . . . . . . 8 (ℚHom‘ℝfld) = ( I ↾ ℚ)
7978fveq2i 6668 . . . . . . 7 (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘(ℚHom‘ℝfld)) = (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ))
8077, 79eqtri 2844 . . . . . 6 (ℝHom‘ℝfld) = (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ))
8180reseq1i 5844 . . . . 5 ((ℝHom‘ℝfld) ↾ ℚ) = ((((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ)) ↾ ℚ)
8273, 81, 673eqtr4i 2854 . . . 4 ((ℝHom‘ℝfld) ↾ ℚ) = (( I ↾ ℝ) ↾ ℚ)
8382a1i 11 . . 3 (⊤ → ((ℝHom‘ℝfld) ↾ ℚ) = (( I ↾ ℝ) ↾ ℚ))
841, 3, 8, 14, 83, 23, 25hauseqcn 31133 . 2 (⊤ → (ℝHom‘ℝfld) = ( I ↾ ℝ))
8584mptru 1540 1 (ℝHom‘ℝfld) = ( I ↾ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wtru 1534  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3495  cin 3935  wss 3936  c0 4291  {csn 4561   I cid 5454  ran crn 5551  cres 5552  cima 5553  wf 6346  1-1-ontowf1o 6349  cfv 6350  (class class class)co 7150  cr 10530  cq 12342  (,)cioo 12732  t crest 16688  topGenctg 16705  fldcrefld 20742  Topctop 21495  TopOnctopon 21512  clsccl 21620  neicnei 21699   Cn ccn 21826  Hauscha 21910  Regcreg 21911  Filcfil 22447   fLimf cflf 22537  CnExtccnext 22661  UnifSpcusp 22857  CUnifSpccusp 22900  CMetSpccms 23929  ℚHomcqqh 31208  ℝHomcrrh 31229   ℝExt crrext 31230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-gcd 15838  df-numer 16069  df-denom 16070  df-gz 16260  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-proset 17532  df-poset 17550  df-plt 17562  df-toset 17638  df-ps 17804  df-tsr 17805  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-cntz 18441  df-od 18650  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-rnghom 19461  df-drng 19498  df-field 19499  df-subrg 19527  df-abv 19582  df-lmod 19630  df-nzr 20025  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-metu 20538  df-cnfld 20540  df-zring 20612  df-zrh 20645  df-zlm 20646  df-chr 20647  df-refld 20743  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-cn 21829  df-cnp 21830  df-haus 21917  df-reg 21918  df-cmp 21989  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-fcls 22543  df-cnext 22662  df-ust 22803  df-utop 22834  df-uss 22859  df-usp 22860  df-ucn 22879  df-cfilu 22890  df-cusp 22901  df-xms 22924  df-ms 22925  df-tms 22926  df-nm 23186  df-ngp 23187  df-nrg 23189  df-nlm 23190  df-cncf 23480  df-cfil 23852  df-cmet 23854  df-cms 23932  df-omnd 30695  df-ogrp 30696  df-orng 30865  df-ofld 30866  df-qqh 31209  df-rrh 31231  df-rrext 31235
This theorem is referenced by:  sitmcl  31604
  Copyright terms: Public domain W3C validator