Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrhre Structured version   Visualization version   GIF version

Theorem rrhre 31871
Description: The ℝHom homomorphism for the real numbers structure is the identity. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Assertion
Ref Expression
rrhre (ℝHom‘ℝfld) = ( I ↾ ℝ)

Proof of Theorem rrhre
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniretop 23832 . . 3 ℝ = (topGen‘ran (,))
2 rehaus 23868 . . . 4 (topGen‘ran (,)) ∈ Haus
32a1i 11 . . 3 (⊤ → (topGen‘ran (,)) ∈ Haus)
4 rerrext 31859 . . . 4 fld ∈ ℝExt
5 eqid 2738 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
6 retopn 24448 . . . . 5 (topGen‘ran (,)) = (TopOpen‘ℝfld)
75, 6rrhcne 31863 . . . 4 (ℝfld ∈ ℝExt → (ℝHom‘ℝfld) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
84, 7mp1i 13 . . 3 (⊤ → (ℝHom‘ℝfld) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
9 retop 23831 . . . . . 6 (topGen‘ran (,)) ∈ Top
101toptopon 21974 . . . . . 6 ((topGen‘ran (,)) ∈ Top ↔ (topGen‘ran (,)) ∈ (TopOn‘ℝ))
119, 10mpbi 229 . . . . 5 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
12 idcn 22316 . . . . 5 ((topGen‘ran (,)) ∈ (TopOn‘ℝ) → ( I ↾ ℝ) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
1311, 12ax-mp 5 . . . 4 ( I ↾ ℝ) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,)))
1413a1i 11 . . 3 (⊤ → ( I ↾ ℝ) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
159a1i 11 . . . . . . 7 (⊤ → (topGen‘ran (,)) ∈ Top)
16 f1oi 6737 . . . . . . . . . 10 ( I ↾ ℚ):ℚ–1-1-onto→ℚ
17 f1of 6700 . . . . . . . . . 10 (( I ↾ ℚ):ℚ–1-1-onto→ℚ → ( I ↾ ℚ):ℚ⟶ℚ)
1816, 17ax-mp 5 . . . . . . . . 9 ( I ↾ ℚ):ℚ⟶ℚ
19 qssre 12628 . . . . . . . . 9 ℚ ⊆ ℝ
20 fss 6601 . . . . . . . . 9 ((( I ↾ ℚ):ℚ⟶ℚ ∧ ℚ ⊆ ℝ) → ( I ↾ ℚ):ℚ⟶ℝ)
2118, 19, 20mp2an 688 . . . . . . . 8 ( I ↾ ℚ):ℚ⟶ℝ
2221a1i 11 . . . . . . 7 (⊤ → ( I ↾ ℚ):ℚ⟶ℝ)
2319a1i 11 . . . . . . 7 (⊤ → ℚ ⊆ ℝ)
24 qdensere 23839 . . . . . . . 8 ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ
2524a1i 11 . . . . . . 7 (⊤ → ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ)
269a1i 11 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → (topGen‘ran (,)) ∈ Top)
27 simplr 765 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → 𝑎 ∈ (topGen‘ran (,)))
28 simpr 484 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → 𝑥𝑎)
29 opnneip 22178 . . . . . . . . . . . . . . . 16 (((topGen‘ran (,)) ∈ Top ∧ 𝑎 ∈ (topGen‘ran (,)) ∧ 𝑥𝑎) → 𝑎 ∈ ((nei‘(topGen‘ran (,)))‘{𝑥}))
3026, 27, 28, 29syl3anc 1369 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → 𝑎 ∈ ((nei‘(topGen‘ran (,)))‘{𝑥}))
31 fvex 6769 . . . . . . . . . . . . . . . 16 ((nei‘(topGen‘ran (,)))‘{𝑥}) ∈ V
32 qex 12630 . . . . . . . . . . . . . . . 16 ℚ ∈ V
33 elrestr 17056 . . . . . . . . . . . . . . . 16 ((((nei‘(topGen‘ran (,)))‘{𝑥}) ∈ V ∧ ℚ ∈ V ∧ 𝑎 ∈ ((nei‘(topGen‘ran (,)))‘{𝑥})) → (𝑎 ∩ ℚ) ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))
3431, 32, 33mp3an12 1449 . . . . . . . . . . . . . . 15 (𝑎 ∈ ((nei‘(topGen‘ran (,)))‘{𝑥}) → (𝑎 ∩ ℚ) ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))
3530, 34syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → (𝑎 ∩ ℚ) ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))
36 inss2 4160 . . . . . . . . . . . . . . . . 17 (𝑎 ∩ ℚ) ⊆ ℚ
37 resiima 5973 . . . . . . . . . . . . . . . . 17 ((𝑎 ∩ ℚ) ⊆ ℚ → (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) = (𝑎 ∩ ℚ))
3836, 37ax-mp 5 . . . . . . . . . . . . . . . 16 (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) = (𝑎 ∩ ℚ)
39 inss1 4159 . . . . . . . . . . . . . . . 16 (𝑎 ∩ ℚ) ⊆ 𝑎
4038, 39eqsstri 3951 . . . . . . . . . . . . . . 15 (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) ⊆ 𝑎
4140a1i 11 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) ⊆ 𝑎)
42 imaeq2 5954 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑎 ∩ ℚ) → (( I ↾ ℚ) “ 𝑏) = (( I ↾ ℚ) “ (𝑎 ∩ ℚ)))
4342sseq1d 3948 . . . . . . . . . . . . . . 15 (𝑏 = (𝑎 ∩ ℚ) → ((( I ↾ ℚ) “ 𝑏) ⊆ 𝑎 ↔ (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) ⊆ 𝑎))
4443rspcev 3552 . . . . . . . . . . . . . 14 (((𝑎 ∩ ℚ) ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∧ (( I ↾ ℚ) “ (𝑎 ∩ ℚ)) ⊆ 𝑎) → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎)
4535, 41, 44syl2anc 583 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) ∧ 𝑥𝑎) → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎)
4645ex 412 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑎 ∈ (topGen‘ran (,))) → (𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))
4746ralrimiva 3107 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))
4847ancli 548 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥 ∈ ℝ ∧ ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎)))
4924eleq2i 2830 . . . . . . . . . . . . 13 (𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ) ↔ 𝑥 ∈ ℝ)
5049biimpri 227 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ))
51 trnei 22951 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ℚ ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ) ↔ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ)))
5211, 19, 51mp3an12 1449 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ) ↔ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ)))
5350, 52mpbid 231 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ))
54 isflf 23052 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ) ∧ ( I ↾ ℚ):ℚ⟶ℝ) → (𝑥 ∈ (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ↔ (𝑥 ∈ ℝ ∧ ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))))
5511, 21, 54mp3an13 1450 . . . . . . . . . . 11 ((((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ) ∈ (Fil‘ℚ) → (𝑥 ∈ (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ↔ (𝑥 ∈ ℝ ∧ ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))))
5653, 55syl 17 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥 ∈ (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ↔ (𝑥 ∈ ℝ ∧ ∀𝑎 ∈ (topGen‘ran (,))(𝑥𝑎 → ∃𝑏 ∈ (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ)(( I ↾ ℚ) “ 𝑏) ⊆ 𝑎))))
5748, 56mpbird 256 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)))
5857ne0d 4266 . . . . . . . 8 (𝑥 ∈ ℝ → (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ≠ ∅)
5958adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → (((topGen‘ran (,)) fLimf (((nei‘(topGen‘ran (,)))‘{𝑥}) ↾t ℚ))‘( I ↾ ℚ)) ≠ ∅)
60 recusp 24451 . . . . . . . . . 10 fld ∈ CUnifSp
61 cuspusp 23360 . . . . . . . . . 10 (ℝfld ∈ CUnifSp → ℝfld ∈ UnifSp)
6260, 61ax-mp 5 . . . . . . . . 9 fld ∈ UnifSp
636uspreg 23334 . . . . . . . . 9 ((ℝfld ∈ UnifSp ∧ (topGen‘ran (,)) ∈ Haus) → (topGen‘ran (,)) ∈ Reg)
6462, 2, 63mp2an 688 . . . . . . . 8 (topGen‘ran (,)) ∈ Reg
6564a1i 11 . . . . . . 7 (⊤ → (topGen‘ran (,)) ∈ Reg)
66 resabs1 5910 . . . . . . . . . 10 (ℚ ⊆ ℝ → (( I ↾ ℝ) ↾ ℚ) = ( I ↾ ℚ))
6719, 66ax-mp 5 . . . . . . . . 9 (( I ↾ ℝ) ↾ ℚ) = ( I ↾ ℚ)
681cnrest 22344 . . . . . . . . . 10 ((( I ↾ ℝ) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))) ∧ ℚ ⊆ ℝ) → (( I ↾ ℝ) ↾ ℚ) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (topGen‘ran (,))))
6913, 19, 68mp2an 688 . . . . . . . . 9 (( I ↾ ℝ) ↾ ℚ) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (topGen‘ran (,)))
7067, 69eqeltrri 2836 . . . . . . . 8 ( I ↾ ℚ) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (topGen‘ran (,)))
7170a1i 11 . . . . . . 7 (⊤ → ( I ↾ ℚ) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (topGen‘ran (,))))
721, 1, 15, 3, 22, 23, 25, 59, 65, 71cnextfres1 23127 . . . . . 6 (⊤ → ((((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ)) ↾ ℚ) = ( I ↾ ℚ))
7372mptru 1546 . . . . 5 ((((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ)) ↾ ℚ) = ( I ↾ ℚ)
74 recms 24449 . . . . . . . . 9 fld ∈ CMetSp
7574elexi 3441 . . . . . . . 8 fld ∈ V
765, 6rrhval 31846 . . . . . . . 8 (ℝfld ∈ V → (ℝHom‘ℝfld) = (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘(ℚHom‘ℝfld)))
7775, 76ax-mp 5 . . . . . . 7 (ℝHom‘ℝfld) = (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘(ℚHom‘ℝfld))
78 qqhre 31870 . . . . . . . 8 (ℚHom‘ℝfld) = ( I ↾ ℚ)
7978fveq2i 6759 . . . . . . 7 (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘(ℚHom‘ℝfld)) = (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ))
8077, 79eqtri 2766 . . . . . 6 (ℝHom‘ℝfld) = (((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ))
8180reseq1i 5876 . . . . 5 ((ℝHom‘ℝfld) ↾ ℚ) = ((((topGen‘ran (,))CnExt(topGen‘ran (,)))‘( I ↾ ℚ)) ↾ ℚ)
8273, 81, 673eqtr4i 2776 . . . 4 ((ℝHom‘ℝfld) ↾ ℚ) = (( I ↾ ℝ) ↾ ℚ)
8382a1i 11 . . 3 (⊤ → ((ℝHom‘ℝfld) ↾ ℚ) = (( I ↾ ℝ) ↾ ℚ))
841, 3, 8, 14, 83, 23, 25hauseqcn 31750 . 2 (⊤ → (ℝHom‘ℝfld) = ( I ↾ ℝ))
8584mptru 1546 1 (ℝHom‘ℝfld) = ( I ↾ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wtru 1540  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  c0 4253  {csn 4558   I cid 5479  ran crn 5581  cres 5582  cima 5583  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cr 10801  cq 12617  (,)cioo 13008  t crest 17048  topGenctg 17065  fldcrefld 20721  Topctop 21950  TopOnctopon 21967  clsccl 22077  neicnei 22156   Cn ccn 22283  Hauscha 22367  Regcreg 22368  Filcfil 22904   fLimf cflf 22994  CnExtccnext 23118  UnifSpcusp 23314  CUnifSpccusp 23357  CMetSpccms 24401  ℚHomcqqh 31822  ℝHomcrrh 31843   ℝExt crrext 31844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-numer 16367  df-denom 16368  df-gz 16559  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-proset 17928  df-poset 17946  df-plt 17963  df-toset 18050  df-ps 18199  df-tsr 18200  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-od 19051  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-field 19909  df-subrg 19937  df-abv 19992  df-lmod 20040  df-nzr 20442  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-metu 20509  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-zlm 20618  df-chr 20619  df-refld 20722  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-haus 22374  df-reg 22375  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-fcls 23000  df-cnext 23119  df-ust 23260  df-utop 23291  df-uss 23316  df-usp 23317  df-ucn 23336  df-cfilu 23347  df-cusp 23358  df-xms 23381  df-ms 23382  df-tms 23383  df-nm 23644  df-ngp 23645  df-nrg 23647  df-nlm 23648  df-cncf 23947  df-cfil 24324  df-cmet 24326  df-cms 24404  df-omnd 31227  df-ogrp 31228  df-orng 31398  df-ofld 31399  df-qqh 31823  df-rrh 31845  df-rrext 31849
This theorem is referenced by:  sitmcl  32218
  Copyright terms: Public domain W3C validator