| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decmul10add | Structured version Visualization version GIF version | ||
| Description: A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decmul10add.1 | ⊢ 𝐴 ∈ ℕ0 |
| decmul10add.2 | ⊢ 𝐵 ∈ ℕ0 |
| decmul10add.3 | ⊢ 𝑀 ∈ ℕ0 |
| decmul10add.4 | ⊢ 𝐸 = (𝑀 · 𝐴) |
| decmul10add.5 | ⊢ 𝐹 = (𝑀 · 𝐵) |
| Ref | Expression |
|---|---|
| decmul10add | ⊢ (𝑀 · ;𝐴𝐵) = (;𝐸0 + 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 12711 | . . 3 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 2 | 1 | oveq2i 7416 | . 2 ⊢ (𝑀 · ;𝐴𝐵) = (𝑀 · ((;10 · 𝐴) + 𝐵)) |
| 3 | decmul10add.3 | . . . 4 ⊢ 𝑀 ∈ ℕ0 | |
| 4 | 3 | nn0cni 12513 | . . 3 ⊢ 𝑀 ∈ ℂ |
| 5 | 10nn0 12726 | . . . . 5 ⊢ ;10 ∈ ℕ0 | |
| 6 | decmul10add.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 7 | 5, 6 | nn0mulcli 12539 | . . . 4 ⊢ (;10 · 𝐴) ∈ ℕ0 |
| 8 | 7 | nn0cni 12513 | . . 3 ⊢ (;10 · 𝐴) ∈ ℂ |
| 9 | decmul10add.2 | . . . 4 ⊢ 𝐵 ∈ ℕ0 | |
| 10 | 9 | nn0cni 12513 | . . 3 ⊢ 𝐵 ∈ ℂ |
| 11 | 4, 8, 10 | adddii 11247 | . 2 ⊢ (𝑀 · ((;10 · 𝐴) + 𝐵)) = ((𝑀 · (;10 · 𝐴)) + (𝑀 · 𝐵)) |
| 12 | 5 | nn0cni 12513 | . . . . 5 ⊢ ;10 ∈ ℂ |
| 13 | 6 | nn0cni 12513 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 14 | 4, 12, 13 | mul12i 11430 | . . . 4 ⊢ (𝑀 · (;10 · 𝐴)) = (;10 · (𝑀 · 𝐴)) |
| 15 | 3, 6 | nn0mulcli 12539 | . . . . 5 ⊢ (𝑀 · 𝐴) ∈ ℕ0 |
| 16 | 15 | dec0u 12729 | . . . 4 ⊢ (;10 · (𝑀 · 𝐴)) = ;(𝑀 · 𝐴)0 |
| 17 | decmul10add.4 | . . . . . 6 ⊢ 𝐸 = (𝑀 · 𝐴) | |
| 18 | 17 | eqcomi 2744 | . . . . 5 ⊢ (𝑀 · 𝐴) = 𝐸 |
| 19 | 18 | deceq1i 12715 | . . . 4 ⊢ ;(𝑀 · 𝐴)0 = ;𝐸0 |
| 20 | 14, 16, 19 | 3eqtri 2762 | . . 3 ⊢ (𝑀 · (;10 · 𝐴)) = ;𝐸0 |
| 21 | decmul10add.5 | . . . 4 ⊢ 𝐹 = (𝑀 · 𝐵) | |
| 22 | 21 | eqcomi 2744 | . . 3 ⊢ (𝑀 · 𝐵) = 𝐹 |
| 23 | 20, 22 | oveq12i 7417 | . 2 ⊢ ((𝑀 · (;10 · 𝐴)) + (𝑀 · 𝐵)) = (;𝐸0 + 𝐹) |
| 24 | 2, 11, 23 | 3eqtri 2762 | 1 ⊢ (𝑀 · ;𝐴𝐵) = (;𝐸0 + 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 ℕ0cn0 12501 ;cdc 12708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-dec 12709 |
| This theorem is referenced by: fmtno5lem4 47570 fmtno4prmfac 47586 fmtno5fac 47596 |
| Copyright terms: Public domain | W3C validator |