MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decmul10add Structured version   Visualization version   GIF version

Theorem decmul10add 12362
Description: A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decmul10add.1 𝐴 ∈ ℕ0
decmul10add.2 𝐵 ∈ ℕ0
decmul10add.3 𝑀 ∈ ℕ0
decmul10add.4 𝐸 = (𝑀 · 𝐴)
decmul10add.5 𝐹 = (𝑀 · 𝐵)
Assertion
Ref Expression
decmul10add (𝑀 · 𝐴𝐵) = (𝐸0 + 𝐹)

Proof of Theorem decmul10add
StepHypRef Expression
1 dfdec10 12296 . . 3 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
21oveq2i 7224 . 2 (𝑀 · 𝐴𝐵) = (𝑀 · ((10 · 𝐴) + 𝐵))
3 decmul10add.3 . . . 4 𝑀 ∈ ℕ0
43nn0cni 12102 . . 3 𝑀 ∈ ℂ
5 10nn0 12311 . . . . 5 10 ∈ ℕ0
6 decmul10add.1 . . . . 5 𝐴 ∈ ℕ0
75, 6nn0mulcli 12128 . . . 4 (10 · 𝐴) ∈ ℕ0
87nn0cni 12102 . . 3 (10 · 𝐴) ∈ ℂ
9 decmul10add.2 . . . 4 𝐵 ∈ ℕ0
109nn0cni 12102 . . 3 𝐵 ∈ ℂ
114, 8, 10adddii 10845 . 2 (𝑀 · ((10 · 𝐴) + 𝐵)) = ((𝑀 · (10 · 𝐴)) + (𝑀 · 𝐵))
125nn0cni 12102 . . . . 5 10 ∈ ℂ
136nn0cni 12102 . . . . 5 𝐴 ∈ ℂ
144, 12, 13mul12i 11027 . . . 4 (𝑀 · (10 · 𝐴)) = (10 · (𝑀 · 𝐴))
153, 6nn0mulcli 12128 . . . . 5 (𝑀 · 𝐴) ∈ ℕ0
1615dec0u 12314 . . . 4 (10 · (𝑀 · 𝐴)) = (𝑀 · 𝐴)0
17 decmul10add.4 . . . . . 6 𝐸 = (𝑀 · 𝐴)
1817eqcomi 2746 . . . . 5 (𝑀 · 𝐴) = 𝐸
1918deceq1i 12300 . . . 4 (𝑀 · 𝐴)0 = 𝐸0
2014, 16, 193eqtri 2769 . . 3 (𝑀 · (10 · 𝐴)) = 𝐸0
21 decmul10add.5 . . . 4 𝐹 = (𝑀 · 𝐵)
2221eqcomi 2746 . . 3 (𝑀 · 𝐵) = 𝐹
2320, 22oveq12i 7225 . 2 ((𝑀 · (10 · 𝐴)) + (𝑀 · 𝐵)) = (𝐸0 + 𝐹)
242, 11, 233eqtri 2769 1 (𝑀 · 𝐴𝐵) = (𝐸0 + 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2110  (class class class)co 7213  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734  0cn0 12090  cdc 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-ltxr 10872  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-dec 12294
This theorem is referenced by:  fmtno5lem4  44681  fmtno4prmfac  44697  fmtno5fac  44707
  Copyright terms: Public domain W3C validator