![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decmul10add | Structured version Visualization version GIF version |
Description: A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decmul10add.1 | โข ๐ด โ โ0 |
decmul10add.2 | โข ๐ต โ โ0 |
decmul10add.3 | โข ๐ โ โ0 |
decmul10add.4 | โข ๐ธ = (๐ ยท ๐ด) |
decmul10add.5 | โข ๐น = (๐ ยท ๐ต) |
Ref | Expression |
---|---|
decmul10add | โข (๐ ยท ;๐ด๐ต) = (;๐ธ0 + ๐น) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 12696 | . . 3 โข ;๐ด๐ต = ((;10 ยท ๐ด) + ๐ต) | |
2 | 1 | oveq2i 7425 | . 2 โข (๐ ยท ;๐ด๐ต) = (๐ ยท ((;10 ยท ๐ด) + ๐ต)) |
3 | decmul10add.3 | . . . 4 โข ๐ โ โ0 | |
4 | 3 | nn0cni 12500 | . . 3 โข ๐ โ โ |
5 | 10nn0 12711 | . . . . 5 โข ;10 โ โ0 | |
6 | decmul10add.1 | . . . . 5 โข ๐ด โ โ0 | |
7 | 5, 6 | nn0mulcli 12526 | . . . 4 โข (;10 ยท ๐ด) โ โ0 |
8 | 7 | nn0cni 12500 | . . 3 โข (;10 ยท ๐ด) โ โ |
9 | decmul10add.2 | . . . 4 โข ๐ต โ โ0 | |
10 | 9 | nn0cni 12500 | . . 3 โข ๐ต โ โ |
11 | 4, 8, 10 | adddii 11242 | . 2 โข (๐ ยท ((;10 ยท ๐ด) + ๐ต)) = ((๐ ยท (;10 ยท ๐ด)) + (๐ ยท ๐ต)) |
12 | 5 | nn0cni 12500 | . . . . 5 โข ;10 โ โ |
13 | 6 | nn0cni 12500 | . . . . 5 โข ๐ด โ โ |
14 | 4, 12, 13 | mul12i 11425 | . . . 4 โข (๐ ยท (;10 ยท ๐ด)) = (;10 ยท (๐ ยท ๐ด)) |
15 | 3, 6 | nn0mulcli 12526 | . . . . 5 โข (๐ ยท ๐ด) โ โ0 |
16 | 15 | dec0u 12714 | . . . 4 โข (;10 ยท (๐ ยท ๐ด)) = ;(๐ ยท ๐ด)0 |
17 | decmul10add.4 | . . . . . 6 โข ๐ธ = (๐ ยท ๐ด) | |
18 | 17 | eqcomi 2736 | . . . . 5 โข (๐ ยท ๐ด) = ๐ธ |
19 | 18 | deceq1i 12700 | . . . 4 โข ;(๐ ยท ๐ด)0 = ;๐ธ0 |
20 | 14, 16, 19 | 3eqtri 2759 | . . 3 โข (๐ ยท (;10 ยท ๐ด)) = ;๐ธ0 |
21 | decmul10add.5 | . . . 4 โข ๐น = (๐ ยท ๐ต) | |
22 | 21 | eqcomi 2736 | . . 3 โข (๐ ยท ๐ต) = ๐น |
23 | 20, 22 | oveq12i 7426 | . 2 โข ((๐ ยท (;10 ยท ๐ด)) + (๐ ยท ๐ต)) = (;๐ธ0 + ๐น) |
24 | 2, 11, 23 | 3eqtri 2759 | 1 โข (๐ ยท ;๐ด๐ต) = (;๐ธ0 + ๐น) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 โ wcel 2099 (class class class)co 7414 0cc0 11124 1c1 11125 + caddc 11127 ยท cmul 11129 โ0cn0 12488 ;cdc 12693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7863 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-ltxr 11269 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-dec 12694 |
This theorem is referenced by: fmtno5lem4 46809 fmtno4prmfac 46825 fmtno5fac 46835 |
Copyright terms: Public domain | W3C validator |