Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1mhdrd Structured version   Visualization version   GIF version

Theorem 1mhdrd 31169
Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021.)
Assertion
Ref Expression
1mhdrd ((0.99) + (0.01)) = 1

Proof of Theorem 1mhdrd
StepHypRef Expression
1 0nn0 12231 . . 3 0 ∈ ℕ0
2 9nn0 12240 . . 3 9 ∈ ℕ0
3 1nn0 12232 . . 3 1 ∈ ℕ0
42dec0h 12441 . . . . . 6 9 = 09
54eqcomi 2748 . . . . 5 09 = 9
65deceq1i 12426 . . . 4 099 = 99
71dec0h 12441 . . . . . 6 0 = 00
87eqcomi 2748 . . . . 5 00 = 0
98deceq1i 12426 . . . 4 001 = 01
10 9cn 12056 . . . . . . 7 9 ∈ ℂ
1110addid1i 11145 . . . . . 6 (9 + 0) = 9
1211oveq1i 7278 . . . . 5 ((9 + 0) + 1) = (9 + 1)
13 9p1e10 12421 . . . . 5 (9 + 1) = 10
1412, 13eqtri 2767 . . . 4 ((9 + 0) + 1) = 10
152, 2, 1, 3, 6, 9, 14, 1, 13decaddc 12474 . . 3 (099 + 001) = 100
161, 2, 2, 1, 1, 3, 3, 1, 1, 15dpadd3 31165 . 2 ((0.99) + (0.01)) = (1.00)
171dp20u 31131 . . 3 00 = 0
1817oveq2i 7279 . 2 (1.00) = (1.0)
193dp0u 31154 . 2 (1.0) = 1
2016, 18, 193eqtri 2771 1 ((0.99) + (0.01)) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7268  0cc0 10855  1c1 10856   + caddc 10858  9c9 12018  cdc 12419  cdp2 31124  .cdp 31141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-dec 12420  df-dp2 31125  df-dp 31142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator