| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1mhdrd | Structured version Visualization version GIF version | ||
| Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| 1mhdrd | ⊢ ((0._99) + (0._01)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12514 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 2 | 9nn0 12523 | . . 3 ⊢ 9 ∈ ℕ0 | |
| 3 | 1nn0 12515 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 4 | 2 | dec0h 12728 | . . . . . 6 ⊢ 9 = ;09 |
| 5 | 4 | eqcomi 2744 | . . . . 5 ⊢ ;09 = 9 |
| 6 | 5 | deceq1i 12713 | . . . 4 ⊢ ;;099 = ;99 |
| 7 | 1 | dec0h 12728 | . . . . . 6 ⊢ 0 = ;00 |
| 8 | 7 | eqcomi 2744 | . . . . 5 ⊢ ;00 = 0 |
| 9 | 8 | deceq1i 12713 | . . . 4 ⊢ ;;001 = ;01 |
| 10 | 9cn 12338 | . . . . . . 7 ⊢ 9 ∈ ℂ | |
| 11 | 10 | addridi 11420 | . . . . . 6 ⊢ (9 + 0) = 9 |
| 12 | 11 | oveq1i 7413 | . . . . 5 ⊢ ((9 + 0) + 1) = (9 + 1) |
| 13 | 9p1e10 12708 | . . . . 5 ⊢ (9 + 1) = ;10 | |
| 14 | 12, 13 | eqtri 2758 | . . . 4 ⊢ ((9 + 0) + 1) = ;10 |
| 15 | 2, 2, 1, 3, 6, 9, 14, 1, 13 | decaddc 12761 | . . 3 ⊢ (;;099 + ;;001) = ;;100 |
| 16 | 1, 2, 2, 1, 1, 3, 3, 1, 1, 15 | dpadd3 32832 | . 2 ⊢ ((0._99) + (0._01)) = (1._00) |
| 17 | 1 | dp20u 32798 | . . 3 ⊢ _00 = 0 |
| 18 | 17 | oveq2i 7414 | . 2 ⊢ (1._00) = (1.0) |
| 19 | 3 | dp0u 32821 | . 2 ⊢ (1.0) = 1 |
| 20 | 16, 18, 19 | 3eqtri 2762 | 1 ⊢ ((0._99) + (0._01)) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7403 0cc0 11127 1c1 11128 + caddc 11130 9c9 12300 ;cdc 12706 _cdp2 32791 .cdp 32808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-dec 12707 df-dp2 32792 df-dp 32809 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |