Home | Metamath
Proof Explorer Theorem List (p. 128 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | znq 12701 | The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ) | ||
Theorem | qre 12702 | A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | ||
Theorem | zq 12703 | An integer is a rational number. (Contributed by NM, 9-Jan-2002.) (Proof shortened by Steven Nguyen, 23-Mar-2023.) |
⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | ||
Theorem | qred 12704 | A rational number is a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | zssq 12705 | The integers are a subset of the rationals. (Contributed by NM, 9-Jan-2002.) |
⊢ ℤ ⊆ ℚ | ||
Theorem | nn0ssq 12706 | The nonnegative integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.) |
⊢ ℕ0 ⊆ ℚ | ||
Theorem | nnssq 12707 | The positive integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.) |
⊢ ℕ ⊆ ℚ | ||
Theorem | qssre 12708 | The rationals are a subset of the reals. (Contributed by NM, 9-Jan-2002.) |
⊢ ℚ ⊆ ℝ | ||
Theorem | qsscn 12709 | The rationals are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
⊢ ℚ ⊆ ℂ | ||
Theorem | qex 12710 | The set of rational numbers exists. See also qexALT 12713. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ ℚ ∈ V | ||
Theorem | nnq 12711 | A positive integer is rational. (Contributed by NM, 17-Nov-2004.) |
⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℚ) | ||
Theorem | qcn 12712 | A rational number is a complex number. (Contributed by NM, 2-Aug-2004.) |
⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | ||
Theorem | qexALT 12713 | Alternate proof of qex 12710. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-Jun-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ℚ ∈ V | ||
Theorem | qaddcl 12714 | Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ) | ||
Theorem | qnegcl 12715 | Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → -𝐴 ∈ ℚ) | ||
Theorem | qmulcl 12716 | Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 · 𝐵) ∈ ℚ) | ||
Theorem | qsubcl 12717 | Closure of subtraction of rationals. (Contributed by NM, 2-Aug-2004.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 − 𝐵) ∈ ℚ) | ||
Theorem | qreccl 12718 | Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℚ) | ||
Theorem | qdivcl 12719 | Closure of division of rationals. (Contributed by NM, 3-Aug-2004.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ) | ||
Theorem | qrevaddcl 12720 | Reverse closure law for addition of rationals. (Contributed by NM, 2-Aug-2004.) |
⊢ (𝐵 ∈ ℚ → ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℚ) ↔ 𝐴 ∈ ℚ)) | ||
Theorem | nnrecq 12721 | The reciprocal of a positive integer is rational. (Contributed by NM, 17-Nov-2004.) |
⊢ (𝐴 ∈ ℕ → (1 / 𝐴) ∈ ℚ) | ||
Theorem | irradd 12722 | The sum of an irrational number and a rational number is irrational. (Contributed by NM, 7-Nov-2008.) |
⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℚ)) | ||
Theorem | irrmul 12723 | The product of an irrational with a nonzero rational is irrational. (Contributed by NM, 7-Nov-2008.) |
⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 · 𝐵) ∈ (ℝ ∖ ℚ)) | ||
Theorem | elpq 12724* | A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022.) |
⊢ ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | ||
Theorem | elpqb 12725* | A class is a positive rational iff it is the quotient of two positive integers. (Contributed by AV, 30-Dec-2022.) |
⊢ ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | ||
Theorem | rpnnen1lem2 12726* | Lemma for rpnnen1 12732. (Contributed by Mario Carneiro, 12-May-2013.) |
⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) ⇒ ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℤ) | ||
Theorem | rpnnen1lem1 12727* | Lemma for rpnnen1 12732. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.) |
⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) & ⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) ∈ (ℚ ↑m ℕ)) | ||
Theorem | rpnnen1lem3 12728* | Lemma for rpnnen1 12732. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.) |
⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) & ⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥) | ||
Theorem | rpnnen1lem4 12729* | Lemma for rpnnen1 12732. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.) |
⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) & ⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) | ||
Theorem | rpnnen1lem5 12730* | Lemma for rpnnen1 12732. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.) |
⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) & ⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) = 𝑥) | ||
Theorem | rpnnen1lem6 12731* | Lemma for rpnnen1 12732. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.) |
⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) & ⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ ℝ ≼ (ℚ ↑m ℕ) | ||
Theorem | rpnnen1 12732 | One half of rpnnen 15945, where we show an injection from the real numbers to sequences of rational numbers. Specifically, we map a real number 𝑥 to the sequence (𝐹‘𝑥):ℕ⟶ℚ (see rpnnen1lem6 12731) such that ((𝐹‘𝑥)‘𝑘) is the largest rational number with denominator 𝑘 that is strictly less than 𝑥. In this manner, we get a monotonically increasing sequence that converges to 𝑥, and since each sequence converges to a unique real number, this mapping from reals to sequences of rational numbers is injective. Note: The ℕ and ℚ existence hypotheses provide for use with either nnex 11988 and qex 12710, or nnexALT 11984 and qexALT 12713. The proof should not be modified to use any of those 4 theorems. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 16-Jun-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.) |
⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ ℝ ≼ (ℚ ↑m ℕ) | ||
Theorem | reexALT 12733 | Alternate proof of reex 10971. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 23-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ℝ ∈ V | ||
Theorem | cnref1o 12734* | There is a natural one-to-one mapping from (ℝ × ℝ) to ℂ, where we map 〈𝑥, 𝑦〉 to (𝑥 + (i · 𝑦)). In our construction of the complex numbers, this is in fact our definition of ℂ (see df-c 10886), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.) |
⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ⇒ ⊢ 𝐹:(ℝ × ℝ)–1-1-onto→ℂ | ||
Theorem | cnexALT 12735 | The set of complex numbers exists. This theorem shows that ax-cnex 10936 is redundant if we assume ax-rep 5210. See also ax-cnex 10936. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-Jun-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ℂ ∈ V | ||
Theorem | xrex 12736 | The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
⊢ ℝ* ∈ V | ||
Theorem | addex 12737 | The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ + ∈ V | ||
Theorem | mulex 12738 | The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ · ∈ V | ||
Syntax | crp 12739 | Extend class notation to include the class of positive reals. |
class ℝ+ | ||
Definition | df-rp 12740 | Define the set of positive reals. Definition of positive numbers in [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.) |
⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | ||
Theorem | elrp 12741 | Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | ||
Theorem | elrpii 12742 | Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 𝐴 ∈ ℝ+ | ||
Theorem | 1rp 12743 | 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.) |
⊢ 1 ∈ ℝ+ | ||
Theorem | 2rp 12744 | 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ 2 ∈ ℝ+ | ||
Theorem | 3rp 12745 | 3 is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 3 ∈ ℝ+ | ||
Theorem | rpssre 12746 | The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.) |
⊢ ℝ+ ⊆ ℝ | ||
Theorem | rpre 12747 | A positive real is a real. (Contributed by NM, 27-Oct-2007.) (Proof shortened by Steven Nguyen, 8-Oct-2022.) |
⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | ||
Theorem | rpxr 12748 | A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) | ||
Theorem | rpcn 12749 | A positive real is a complex number. (Contributed by NM, 11-Nov-2008.) |
⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | ||
Theorem | nnrp 12750 | A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.) |
⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) | ||
Theorem | rpgt0 12751 | A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | ||
Theorem | rpge0 12752 | A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.) |
⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) | ||
Theorem | rpregt0 12753 | A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | ||
Theorem | rprege0 12754 | A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014.) |
⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) | ||
Theorem | rpne0 12755 | A positive real is nonzero. (Contributed by NM, 18-Jul-2008.) |
⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | ||
Theorem | rprene0 12756 | A positive real is a nonzero real number. (Contributed by NM, 11-Nov-2008.) |
⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0)) | ||
Theorem | rpcnne0 12757 | A positive real is a nonzero complex number. (Contributed by NM, 11-Nov-2008.) |
⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) | ||
Theorem | rpcndif0 12758 | A positive real number is a complex number not being 0. (Contributed by AV, 29-May-2020.) |
⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ (ℂ ∖ {0})) | ||
Theorem | ralrp 12759 | Quantification over positive reals. (Contributed by NM, 12-Feb-2008.) |
⊢ (∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝜑)) | ||
Theorem | rexrp 12760 | Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.) |
⊢ (∃𝑥 ∈ ℝ+ 𝜑 ↔ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ 𝜑)) | ||
Theorem | rpaddcl 12761 | Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ+) | ||
Theorem | rpmulcl 12762 | Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ+) | ||
Theorem | rpmtmip 12763 | "Minus times minus is plus", see also nnmtmip 12008, holds for positive reals, too (formalized to "The product of two negative reals is a positive real"). "The reason for this" in this case is that (-𝐴 · -𝐵) = (𝐴 · 𝐵) for all complex numbers 𝐴 and 𝐵 because of mul2neg 11423, 𝐴 and 𝐵 are complex numbers because of rpcn 12749, and (𝐴 · 𝐵) ∈ ℝ+ because of rpmulcl 12762. Note that the opposites -𝐴 and -𝐵 of the positive reals 𝐴 and 𝐵 are negative reals. (Contributed by AV, 23-Dec-2022.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (-𝐴 · -𝐵) ∈ ℝ+) | ||
Theorem | rpdivcl 12764 | Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) | ||
Theorem | rpreccl 12765 | Closure law for reciprocation of positive reals. (Contributed by Jeff Hankins, 23-Nov-2008.) |
⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+) | ||
Theorem | rphalfcl 12766 | Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.) |
⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) | ||
Theorem | rpgecl 12767 | A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ+) | ||
Theorem | rphalflt 12768 | Half of a positive real is less than the original number. (Contributed by Mario Carneiro, 21-May-2014.) |
⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) < 𝐴) | ||
Theorem | rerpdivcl 12769 | Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) | ||
Theorem | ge0p1rp 12770 | A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+) | ||
Theorem | rpneg 12771 | Either a nonzero real or its negation is a positive real, but not both. Axiom 8 of [Apostol] p. 20. (Contributed by NM, 7-Nov-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℝ+ ↔ ¬ -𝐴 ∈ ℝ+)) | ||
Theorem | negelrp 12772 | Elementhood of a negation in the positive real numbers. (Contributed by Thierry Arnoux, 19-Sep-2018.) |
⊢ (𝐴 ∈ ℝ → (-𝐴 ∈ ℝ+ ↔ 𝐴 < 0)) | ||
Theorem | negelrpd 12773 | The negation of a negative number is in the positive real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) ⇒ ⊢ (𝜑 → -𝐴 ∈ ℝ+) | ||
Theorem | 0nrp 12774 | Zero is not a positive real. Axiom 9 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.) |
⊢ ¬ 0 ∈ ℝ+ | ||
Theorem | ltsubrp 12775 | Subtracting a positive real from another number decreases it. (Contributed by FL, 27-Dec-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 − 𝐵) < 𝐴) | ||
Theorem | ltaddrp 12776 | Adding a positive number to another number increases it. (Contributed by FL, 27-Dec-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵)) | ||
Theorem | difrp 12777 | Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℝ+)) | ||
Theorem | elrpd 12778 | Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ+) | ||
Theorem | nnrpd 12779 | A positive integer is a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ+) | ||
Theorem | zgt1rpn0n1 12780 | An integer greater than 1 is a positive real number not equal to 0 or 1. Useful for working with integer logarithm bases (which is a common case, e.g., base 2, base 3, or base 10). (Contributed by Thierry Arnoux, 26-Sep-2017.) (Proof shortened by AV, 9-Jul-2022.) |
⊢ (𝐵 ∈ (ℤ≥‘2) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | ||
Theorem | rpred 12781 | A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | rpxrd 12782 | A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ*) | ||
Theorem | rpcnd 12783 | A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
Theorem | rpgt0d 12784 | A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → 0 < 𝐴) | ||
Theorem | rpge0d 12785 | A positive real is greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → 0 ≤ 𝐴) | ||
Theorem | rpne0d 12786 | A positive real is nonzero. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) | ||
Theorem | rpregt0d 12787 | A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | ||
Theorem | rprege0d 12788 | A positive real is real and greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) | ||
Theorem | rprene0d 12789 | A positive real is a nonzero real number. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0)) | ||
Theorem | rpcnne0d 12790 | A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) | ||
Theorem | rpreccld 12791 | Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) | ||
Theorem | rprecred 12792 | Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) | ||
Theorem | rphalfcld 12793 | Closure law for half of a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ+) | ||
Theorem | reclt1d 12794 | The reciprocal of a positive number less than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴))) | ||
Theorem | recgt1d 12795 | The reciprocal of a positive number greater than 1 is less than 1. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (1 < 𝐴 ↔ (1 / 𝐴) < 1)) | ||
Theorem | rpaddcld 12796 | Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ+) | ||
Theorem | rpmulcld 12797 | Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ+) | ||
Theorem | rpdivcld 12798 | Closure law for division of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ+) | ||
Theorem | ltrecd 12799 | The reciprocal of both sides of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴))) | ||
Theorem | lerecd 12800 | The reciprocal of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |