| Metamath
Proof Explorer Theorem List (p. 128 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 9p7e16 12701 | 9 + 7 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 + 7) = ;16 | ||
| Theorem | 9p8e17 12702 | 9 + 8 = 17. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 + 8) = ;17 | ||
| Theorem | 9p9e18 12703 | 9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 + 9) = ;18 | ||
| Theorem | 10p10e20 12704 | 10 + 10 = 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (;10 + ;10) = ;20 | ||
| Theorem | 10m1e9 12705 | 10 - 1 = 9. (Contributed by AV, 6-Sep-2021.) |
| ⊢ (;10 − 1) = 9 | ||
| Theorem | 4t3lem 12706 | Lemma for 4t3e12 12707 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 = (𝐵 + 1) & ⊢ (𝐴 · 𝐵) = 𝐷 & ⊢ (𝐷 + 𝐴) = 𝐸 ⇒ ⊢ (𝐴 · 𝐶) = 𝐸 | ||
| Theorem | 4t3e12 12707 | 4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (4 · 3) = ;12 | ||
| Theorem | 4t4e16 12708 | 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (4 · 4) = ;16 | ||
| Theorem | 5t2e10 12709 | 5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 4-Sep-2021.) |
| ⊢ (5 · 2) = ;10 | ||
| Theorem | 5t3e15 12710 | 5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (5 · 3) = ;15 | ||
| Theorem | 5t4e20 12711 | 5 times 4 equals 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (5 · 4) = ;20 | ||
| Theorem | 5t5e25 12712 | 5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (5 · 5) = ;25 | ||
| Theorem | 6t2e12 12713 | 6 times 2 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (6 · 2) = ;12 | ||
| Theorem | 6t3e18 12714 | 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (6 · 3) = ;18 | ||
| Theorem | 6t4e24 12715 | 6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (6 · 4) = ;24 | ||
| Theorem | 6t5e30 12716 | 6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (6 · 5) = ;30 | ||
| Theorem | 6t6e36 12717 | 6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (6 · 6) = ;36 | ||
| Theorem | 7t2e14 12718 | 7 times 2 equals 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 2) = ;14 | ||
| Theorem | 7t3e21 12719 | 7 times 3 equals 21. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 3) = ;21 | ||
| Theorem | 7t4e28 12720 | 7 times 4 equals 28. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 4) = ;28 | ||
| Theorem | 7t5e35 12721 | 7 times 5 equals 35. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 5) = ;35 | ||
| Theorem | 7t6e42 12722 | 7 times 6 equals 42. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 6) = ;42 | ||
| Theorem | 7t7e49 12723 | 7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 7) = ;49 | ||
| Theorem | 8t2e16 12724 | 8 times 2 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 · 2) = ;16 | ||
| Theorem | 8t3e24 12725 | 8 times 3 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 · 3) = ;24 | ||
| Theorem | 8t4e32 12726 | 8 times 4 equals 32. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 · 4) = ;32 | ||
| Theorem | 8t5e40 12727 | 8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (8 · 5) = ;40 | ||
| Theorem | 8t6e48 12728 | 8 times 6 equals 48. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (8 · 6) = ;48 | ||
| Theorem | 8t7e56 12729 | 8 times 7 equals 56. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 · 7) = ;56 | ||
| Theorem | 8t8e64 12730 | 8 times 8 equals 64. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 · 8) = ;64 | ||
| Theorem | 9t2e18 12731 | 9 times 2 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 2) = ;18 | ||
| Theorem | 9t3e27 12732 | 9 times 3 equals 27. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 3) = ;27 | ||
| Theorem | 9t4e36 12733 | 9 times 4 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 4) = ;36 | ||
| Theorem | 9t5e45 12734 | 9 times 5 equals 45. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 5) = ;45 | ||
| Theorem | 9t6e54 12735 | 9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 6) = ;54 | ||
| Theorem | 9t7e63 12736 | 9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 7) = ;63 | ||
| Theorem | 9t8e72 12737 | 9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 8) = ;72 | ||
| Theorem | 9t9e81 12738 | 9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 9) = ;81 | ||
| Theorem | 9t11e99 12739 | 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (9 · ;11) = ;99 | ||
| Theorem | 9lt10 12740 | 9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 9 < ;10 | ||
| Theorem | 8lt10 12741 | 8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 8 < ;10 | ||
| Theorem | 7lt10 12742 | 7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 7 < ;10 | ||
| Theorem | 6lt10 12743 | 6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 6 < ;10 | ||
| Theorem | 5lt10 12744 | 5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 5 < ;10 | ||
| Theorem | 4lt10 12745 | 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 4 < ;10 | ||
| Theorem | 3lt10 12746 | 3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 3 < ;10 | ||
| Theorem | 2lt10 12747 | 2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 2 < ;10 | ||
| Theorem | 1lt10 12748 | 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 1 < ;10 | ||
| Theorem | decbin0 12749 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) | ||
| Theorem | decbin2 12750 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) | ||
| Theorem | decbin3 12751 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1) | ||
| Theorem | 5recm6rec 12752 | One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.) |
| ⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) | ||
| Syntax | cuz 12753 | Extend class notation with the upper integer function. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". |
| class ℤ≥ | ||
| Definition | df-uz 12754* | Define a function whose value at 𝑗 is the semi-infinite set of contiguous integers starting at 𝑗, which we will also call the upper integers starting at 𝑗. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". See uzval 12755 for its value, uzssz 12774 for its relationship to ℤ, nnuz 12796 and nn0uz 12795 for its relationships to ℕ and ℕ0, and eluz1 12757 and eluz2 12759 for its membership relations. (Contributed by NM, 5-Sep-2005.) |
| ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) | ||
| Theorem | uzval 12755* | The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ (𝑁 ∈ ℤ → (ℤ≥‘𝑁) = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) | ||
| Theorem | uzf 12756 | The domain and codomain of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ℤ≥:ℤ⟶𝒫 ℤ | ||
| Theorem | eluz1 12757 | Membership in the upper set of integers starting at 𝑀. (Contributed by NM, 5-Sep-2005.) |
| ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | ||
| Theorem | eluzel2 12758 | Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | ||
| Theorem | eluz2 12759 | Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show 𝑀 ∈ ℤ. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | ||
| Theorem | eluzmn 12760 | Membership in an earlier upper set of integers. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ (ℤ≥‘(𝑀 − 𝑁))) | ||
| Theorem | eluz1i 12761 | Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.) |
| ⊢ 𝑀 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | ||
| Theorem | eluzuzle 12762 | An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.) |
| ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) | ||
| Theorem | eluzelz 12763 | A member of an upper set of integers is an integer. (Contributed by NM, 6-Sep-2005.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | ||
| Theorem | eluzelre 12764 | A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | ||
| Theorem | eluzelcn 12765 | A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) | ||
| Theorem | eluzle 12766 | Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | ||
| Theorem | eluz 12767 | Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) | ||
| Theorem | uzid 12768 | Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | uzidd 12769 | Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | uzn0 12770 | The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.) |
| ⊢ (𝑀 ∈ ran ℤ≥ → 𝑀 ≠ ∅) | ||
| Theorem | uztrn 12771 | Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.) |
| ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) | ||
| Theorem | uztrn2 12772 | Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| ⊢ 𝑍 = (ℤ≥‘𝐾) ⇒ ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) | ||
| Theorem | uzneg 12773 | Contraposition law for upper integers. (Contributed by NM, 28-Nov-2005.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → -𝑀 ∈ (ℤ≥‘-𝑁)) | ||
| Theorem | uzssz 12774 | An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ (ℤ≥‘𝑀) ⊆ ℤ | ||
| Theorem | uzssre 12775 | An upper set of integers is a subset of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (ℤ≥‘𝑀) ⊆ ℝ | ||
| Theorem | uzss 12776 | Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | ||
| Theorem | uztric 12777 | Totality of the ordering relation on integers, stated in terms of upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jun-2013.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) | ||
| Theorem | uz11 12778 | The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005.) |
| ⊢ (𝑀 ∈ ℤ → ((ℤ≥‘𝑀) = (ℤ≥‘𝑁) ↔ 𝑀 = 𝑁)) | ||
| Theorem | eluzp1m1 12779 | Membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ≥‘𝑀)) | ||
| Theorem | eluzp1l 12780 | Strict ordering implied by membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 < 𝑁) | ||
| Theorem | eluzp1p1 12781 | Membership in the next upper set of integers. (Contributed by NM, 5-Oct-2005.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘(𝑀 + 1))) | ||
| Theorem | eluzadd 12782 | Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by SN, 7-Feb-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) | ||
| Theorem | eluzsub 12783 | Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by SN, 7-Feb-2025.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | ||
| Theorem | eluzaddi 12784 | Membership in a later upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.) Shorten and remove 𝑀 ∈ ℤ hypothesis. (Revised by SN, 7-Feb-2025.) |
| ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) | ||
| Theorem | eluzaddiOLD 12785 | Obsolete version of eluzaddi 12784 as of 7-Feb-2025. (Contributed by Paul Chapman, 22-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) | ||
| Theorem | eluzsubi 12786 | Membership in an earlier upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.) (Proof shortened by SN, 7-Feb-2025.) |
| ⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | ||
| Theorem | eluzsubiOLD 12787 | Obsolete version of eluzsubi 12786 as of 7-Feb-2025. (Contributed by Paul Chapman, 22-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | ||
| Theorem | eluzaddOLD 12788 | Obsolete version of eluzadd 12782 as of 7-Feb-2025. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) | ||
| Theorem | eluzsubOLD 12789 | Obsolete version of eluzsub 12783 as of 7-Feb-2025. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | ||
| Theorem | subeluzsub 12790 | Membership of a difference in an earlier upper set of integers. (Contributed by AV, 10-May-2022.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑀 − 𝐾) ∈ (ℤ≥‘(𝑀 − 𝑁))) | ||
| Theorem | uzm1 12791 | Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) | ||
| Theorem | uznn0sub 12792 | The nonnegative difference of integers is a nonnegative integer. (Contributed by NM, 4-Sep-2005.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈ ℕ0) | ||
| Theorem | uzin 12793 | Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) = (ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | ||
| Theorem | uzp1 12794 | Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) | ||
| Theorem | nn0uz 12795 | Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| ⊢ ℕ0 = (ℤ≥‘0) | ||
| Theorem | nnuz 12796 | Positive integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| ⊢ ℕ = (ℤ≥‘1) | ||
| Theorem | elnnuz 12797 | A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
| ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | ||
| Theorem | elnn0uz 12798 | A nonnegative integer expressed as a member an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
| ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | ||
| Theorem | 1eluzge0 12799 | 1 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
| ⊢ 1 ∈ (ℤ≥‘0) | ||
| Theorem | 2eluzge0 12800 | 2 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ 2 ∈ (ℤ≥‘0) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |