| Metamath
Proof Explorer Theorem List (p. 128 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | nummac 12701 | Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
| Theorem | numma2c 12702 | Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸 & ⊢ ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) ⇒ ⊢ ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
| Theorem | numadd 12703 | Add two decimal integers 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ (𝐴 + 𝐶) = 𝐸 & ⊢ (𝐵 + 𝐷) = 𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
| Theorem | numaddc 12704 | Add two decimal integers 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ 𝐹 ∈ ℕ0 & ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 & ⊢ (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹) ⇒ ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
| Theorem | nummul1c 12705 | The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 & ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) ⇒ ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) | ||
| Theorem | nummul2c 12706 | The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶 & ⊢ (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷) ⇒ ⊢ (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷) | ||
| Theorem | decma 12707 | Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ 𝑃 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | ||
| Theorem | decmac 12708 | Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝐷) = ;𝐺𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | ||
| Theorem | decma2c 12709 | Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplier 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸 & ⊢ ((𝑃 · 𝐵) + 𝐷) = ;𝐺𝐹 ⇒ ⊢ ((𝑃 · 𝑀) + 𝑁) = ;𝐸𝐹 | ||
| Theorem | decadd 12710 | Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ (𝐴 + 𝐶) = 𝐸 & ⊢ (𝐵 + 𝐷) = 𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 | ||
| Theorem | decaddc 12711 | Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 & ⊢ 𝐹 ∈ ℕ0 & ⊢ (𝐵 + 𝐷) = ;1𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 | ||
| Theorem | decaddc2 12712 | Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 & ⊢ (𝐵 + 𝐷) = ;10 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸0 | ||
| Theorem | decrmanc 12713 | Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by AV, 16-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑃 ∈ ℕ0 & ⊢ (𝐴 · 𝑃) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝑁) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | ||
| Theorem | decrmac 12714 | Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by AV, 16-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐺) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝑁) = ;𝐺𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | ||
| Theorem | decaddm10 12715 | The sum of two multiples of 10 is a multiple of 10. (Contributed by AV, 30-Jul-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ (;𝐴0 + ;𝐵0) = ;(𝐴 + 𝐵)0 | ||
| Theorem | decaddi 12716 | Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ (𝐵 + 𝑁) = 𝐶 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐴𝐶 | ||
| Theorem | decaddci 12717 | Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ (𝐴 + 1) = 𝐷 & ⊢ 𝐶 ∈ ℕ0 & ⊢ (𝐵 + 𝑁) = ;1𝐶 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 | ||
| Theorem | decaddci2 12718 | Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ (𝐴 + 1) = 𝐷 & ⊢ (𝐵 + 𝑁) = ;10 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐷0 | ||
| Theorem | decsubi 12719 | Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ (𝐴 + 1) = 𝐷 & ⊢ (𝐵 − 𝑁) = 𝐶 ⇒ ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 | ||
| Theorem | decmul1 12720 | The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) Remove hypothesis 𝐷 ∈ ℕ0. (Revised by Steven Nguyen, 7-Dec-2022.) |
| ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵 & ⊢ (𝐴 · 𝑃) = 𝐶 & ⊢ (𝐵 · 𝑃) = 𝐷 ⇒ ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 | ||
| Theorem | decmul1c 12721 | The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 & ⊢ (𝐵 · 𝑃) = ;𝐸𝐷 ⇒ ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 | ||
| Theorem | decmul2c 12722 | The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶 & ⊢ (𝑃 · 𝐵) = ;𝐸𝐷 ⇒ ⊢ (𝑃 · 𝑁) = ;𝐶𝐷 | ||
| Theorem | decmulnc 12723 | The product of a numeral with a number (no carry). (Contributed by AV, 15-Jun-2021.) |
| ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ (𝑁 · ;𝐴𝐵) = ;(𝑁 · 𝐴)(𝑁 · 𝐵) | ||
| Theorem | 11multnc 12724 | The product of 11 (as numeral) with a number (no carry). (Contributed by AV, 15-Jun-2021.) |
| ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝑁 · ;11) = ;𝑁𝑁 | ||
| Theorem | decmul10add 12725 | A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝐸 = (𝑀 · 𝐴) & ⊢ 𝐹 = (𝑀 · 𝐵) ⇒ ⊢ (𝑀 · ;𝐴𝐵) = (;𝐸0 + 𝐹) | ||
| Theorem | 6p5lem 12726 | Lemma for 6p5e11 12729 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐵 = (𝐷 + 1) & ⊢ 𝐶 = (𝐸 + 1) & ⊢ (𝐴 + 𝐷) = ;1𝐸 ⇒ ⊢ (𝐴 + 𝐵) = ;1𝐶 | ||
| Theorem | 5p5e10 12727 | 5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (5 + 5) = ;10 | ||
| Theorem | 6p4e10 12728 | 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (6 + 4) = ;10 | ||
| Theorem | 6p5e11 12729 | 6 + 5 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (6 + 5) = ;11 | ||
| Theorem | 6p6e12 12730 | 6 + 6 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (6 + 6) = ;12 | ||
| Theorem | 7p3e10 12731 | 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (7 + 3) = ;10 | ||
| Theorem | 7p4e11 12732 | 7 + 4 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (7 + 4) = ;11 | ||
| Theorem | 7p5e12 12733 | 7 + 5 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 + 5) = ;12 | ||
| Theorem | 7p6e13 12734 | 7 + 6 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 + 6) = ;13 | ||
| Theorem | 7p7e14 12735 | 7 + 7 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 + 7) = ;14 | ||
| Theorem | 8p2e10 12736 | 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (8 + 2) = ;10 | ||
| Theorem | 8p3e11 12737 | 8 + 3 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (8 + 3) = ;11 | ||
| Theorem | 8p4e12 12738 | 8 + 4 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 + 4) = ;12 | ||
| Theorem | 8p5e13 12739 | 8 + 5 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 + 5) = ;13 | ||
| Theorem | 8p6e14 12740 | 8 + 6 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 + 6) = ;14 | ||
| Theorem | 8p7e15 12741 | 8 + 7 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 + 7) = ;15 | ||
| Theorem | 8p8e16 12742 | 8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 + 8) = ;16 | ||
| Theorem | 9p2e11 12743 | 9 + 2 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (9 + 2) = ;11 | ||
| Theorem | 9p3e12 12744 | 9 + 3 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 + 3) = ;12 | ||
| Theorem | 9p4e13 12745 | 9 + 4 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 + 4) = ;13 | ||
| Theorem | 9p5e14 12746 | 9 + 5 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 + 5) = ;14 | ||
| Theorem | 9p6e15 12747 | 9 + 6 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 + 6) = ;15 | ||
| Theorem | 9p7e16 12748 | 9 + 7 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 + 7) = ;16 | ||
| Theorem | 9p8e17 12749 | 9 + 8 = 17. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 + 8) = ;17 | ||
| Theorem | 9p9e18 12750 | 9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 + 9) = ;18 | ||
| Theorem | 10p10e20 12751 | 10 + 10 = 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (;10 + ;10) = ;20 | ||
| Theorem | 10m1e9 12752 | 10 - 1 = 9. (Contributed by AV, 6-Sep-2021.) |
| ⊢ (;10 − 1) = 9 | ||
| Theorem | 4t3lem 12753 | Lemma for 4t3e12 12754 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 = (𝐵 + 1) & ⊢ (𝐴 · 𝐵) = 𝐷 & ⊢ (𝐷 + 𝐴) = 𝐸 ⇒ ⊢ (𝐴 · 𝐶) = 𝐸 | ||
| Theorem | 4t3e12 12754 | 4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (4 · 3) = ;12 | ||
| Theorem | 4t4e16 12755 | 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (4 · 4) = ;16 | ||
| Theorem | 5t2e10 12756 | 5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 4-Sep-2021.) |
| ⊢ (5 · 2) = ;10 | ||
| Theorem | 5t3e15 12757 | 5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (5 · 3) = ;15 | ||
| Theorem | 5t4e20 12758 | 5 times 4 equals 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (5 · 4) = ;20 | ||
| Theorem | 5t5e25 12759 | 5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (5 · 5) = ;25 | ||
| Theorem | 6t2e12 12760 | 6 times 2 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (6 · 2) = ;12 | ||
| Theorem | 6t3e18 12761 | 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (6 · 3) = ;18 | ||
| Theorem | 6t4e24 12762 | 6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (6 · 4) = ;24 | ||
| Theorem | 6t5e30 12763 | 6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (6 · 5) = ;30 | ||
| Theorem | 6t6e36 12764 | 6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (6 · 6) = ;36 | ||
| Theorem | 7t2e14 12765 | 7 times 2 equals 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 2) = ;14 | ||
| Theorem | 7t3e21 12766 | 7 times 3 equals 21. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 3) = ;21 | ||
| Theorem | 7t4e28 12767 | 7 times 4 equals 28. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 4) = ;28 | ||
| Theorem | 7t5e35 12768 | 7 times 5 equals 35. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 5) = ;35 | ||
| Theorem | 7t6e42 12769 | 7 times 6 equals 42. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 6) = ;42 | ||
| Theorem | 7t7e49 12770 | 7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 7) = ;49 | ||
| Theorem | 8t2e16 12771 | 8 times 2 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 · 2) = ;16 | ||
| Theorem | 8t3e24 12772 | 8 times 3 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 · 3) = ;24 | ||
| Theorem | 8t4e32 12773 | 8 times 4 equals 32. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 · 4) = ;32 | ||
| Theorem | 8t5e40 12774 | 8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (8 · 5) = ;40 | ||
| Theorem | 8t6e48 12775 | 8 times 6 equals 48. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (8 · 6) = ;48 | ||
| Theorem | 8t7e56 12776 | 8 times 7 equals 56. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 · 7) = ;56 | ||
| Theorem | 8t8e64 12777 | 8 times 8 equals 64. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 · 8) = ;64 | ||
| Theorem | 9t2e18 12778 | 9 times 2 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 2) = ;18 | ||
| Theorem | 9t3e27 12779 | 9 times 3 equals 27. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 3) = ;27 | ||
| Theorem | 9t4e36 12780 | 9 times 4 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 4) = ;36 | ||
| Theorem | 9t5e45 12781 | 9 times 5 equals 45. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 5) = ;45 | ||
| Theorem | 9t6e54 12782 | 9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 6) = ;54 | ||
| Theorem | 9t7e63 12783 | 9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 7) = ;63 | ||
| Theorem | 9t8e72 12784 | 9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 8) = ;72 | ||
| Theorem | 9t9e81 12785 | 9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 9) = ;81 | ||
| Theorem | 9t11e99 12786 | 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (9 · ;11) = ;99 | ||
| Theorem | 9lt10 12787 | 9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 9 < ;10 | ||
| Theorem | 8lt10 12788 | 8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 8 < ;10 | ||
| Theorem | 7lt10 12789 | 7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 7 < ;10 | ||
| Theorem | 6lt10 12790 | 6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 6 < ;10 | ||
| Theorem | 5lt10 12791 | 5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 5 < ;10 | ||
| Theorem | 4lt10 12792 | 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 4 < ;10 | ||
| Theorem | 3lt10 12793 | 3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 3 < ;10 | ||
| Theorem | 2lt10 12794 | 2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 2 < ;10 | ||
| Theorem | 1lt10 12795 | 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 1 < ;10 | ||
| Theorem | decbin0 12796 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) | ||
| Theorem | decbin2 12797 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) | ||
| Theorem | decbin3 12798 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1) | ||
| Theorem | 5recm6rec 12799 | One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.) |
| ⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) | ||
| Syntax | cuz 12800 | Extend class notation with the upper integer function. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". |
| class ℤ≥ | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |