Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtno5lem4 Structured version   Visualization version   GIF version

Theorem fmtno5lem4 47561
Description: Lemma 4 for fmtno5 47562. (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
fmtno5lem4 (65536↑2) = 4294967296

Proof of Theorem fmtno5lem4
StepHypRef Expression
1 6nn0 12470 . . . . . . . 8 6 ∈ ℕ0
2 5nn0 12469 . . . . . . . 8 5 ∈ ℕ0
31, 2deccl 12671 . . . . . . 7 65 ∈ ℕ0
43, 2deccl 12671 . . . . . 6 655 ∈ ℕ0
5 3nn0 12467 . . . . . 6 3 ∈ ℕ0
64, 5deccl 12671 . . . . 5 6553 ∈ ℕ0
76, 1deccl 12671 . . . 4 65536 ∈ ℕ0
87nn0cni 12461 . . 3 65536 ∈ ℂ
98sqvali 14152 . 2 (65536↑2) = (65536 · 65536)
10 fmtno5lem1 47558 . . . . . . . . . 10 (65536 · 6) = 393216
1110eqcomi 2739 . . . . . . . . 9 393216 = (65536 · 6)
12 fmtno5lem2 47559 . . . . . . . . . 10 (65536 · 5) = 327680
1312eqcomi 2739 . . . . . . . . 9 327680 = (65536 · 5)
141, 2, 7, 11, 13decmul10add 12725 . . . . . . . 8 (65536 · 65) = (3932160 + 327680)
1514eqcomi 2739 . . . . . . 7 (3932160 + 327680) = (65536 · 65)
163, 2, 7, 15, 13decmul10add 12725 . . . . . 6 (65536 · 655) = ((3932160 + 327680)0 + 327680)
1716eqcomi 2739 . . . . 5 ((3932160 + 327680)0 + 327680) = (65536 · 655)
18 fmtno5lem3 47560 . . . . . 6 (65536 · 3) = 196608
1918eqcomi 2739 . . . . 5 196608 = (65536 · 3)
204, 5, 7, 17, 19decmul10add 12725 . . . 4 (65536 · 6553) = (((3932160 + 327680)0 + 327680)0 + 196608)
2120eqcomi 2739 . . 3 (((3932160 + 327680)0 + 327680)0 + 196608) = (65536 · 6553)
226, 1, 7, 21, 11decmul10add 12725 . 2 (65536 · 65536) = ((((3932160 + 327680)0 + 327680)0 + 196608)0 + 393216)
23 4nn0 12468 . . . . . . . . . . 11 4 ∈ ℕ0
24 2nn0 12466 . . . . . . . . . . 11 2 ∈ ℕ0
2523, 24deccl 12671 . . . . . . . . . 10 42 ∈ ℕ0
26 9nn0 12473 . . . . . . . . . 10 9 ∈ ℕ0
2725, 26deccl 12671 . . . . . . . . 9 429 ∈ ℕ0
2827, 23deccl 12671 . . . . . . . 8 4294 ∈ ℕ0
2928, 2deccl 12671 . . . . . . 7 42945 ∈ ℕ0
30 7nn0 12471 . . . . . . 7 7 ∈ ℕ0
3129, 30deccl 12671 . . . . . 6 429457 ∈ ℕ0
3231, 23deccl 12671 . . . . 5 4294574 ∈ ℕ0
33 0nn0 12464 . . . . 5 0 ∈ ℕ0
3432, 33deccl 12671 . . . 4 42945740 ∈ ℕ0
35 8nn0 12472 . . . 4 8 ∈ ℕ0
3634, 35deccl 12671 . . 3 429457408 ∈ ℕ0
375, 26deccl 12671 . . . . . 6 39 ∈ ℕ0
3837, 5deccl 12671 . . . . 5 393 ∈ ℕ0
3938, 24deccl 12671 . . . 4 3932 ∈ ℕ0
40 1nn0 12465 . . . 4 1 ∈ ℕ0
4139, 40deccl 12671 . . 3 39321 ∈ ℕ0
4227, 24deccl 12671 . . . . . . . . 9 4292 ∈ ℕ0
4342, 1deccl 12671 . . . . . . . 8 42926 ∈ ℕ0
4443, 33deccl 12671 . . . . . . 7 429260 ∈ ℕ0
4544, 35deccl 12671 . . . . . 6 4292608 ∈ ℕ0
4645, 33deccl 12671 . . . . 5 42926080 ∈ ℕ0
4740, 26deccl 12671 . . . . . . . 8 19 ∈ ℕ0
4847, 1deccl 12671 . . . . . . 7 196 ∈ ℕ0
4948, 1deccl 12671 . . . . . 6 1966 ∈ ℕ0
5049, 33deccl 12671 . . . . 5 19660 ∈ ℕ0
5125, 2deccl 12671 . . . . . . . . . . 11 425 ∈ ℕ0
5251, 26deccl 12671 . . . . . . . . . 10 4259 ∈ ℕ0
5352, 35deccl 12671 . . . . . . . . 9 42598 ∈ ℕ0
5453, 23deccl 12671 . . . . . . . 8 425984 ∈ ℕ0
5554, 33deccl 12671 . . . . . . 7 4259840 ∈ ℕ0
565, 24deccl 12671 . . . . . . . . . 10 32 ∈ ℕ0
5756, 30deccl 12671 . . . . . . . . 9 327 ∈ ℕ0
5857, 1deccl 12671 . . . . . . . 8 3276 ∈ ℕ0
5958, 35deccl 12671 . . . . . . 7 32768 ∈ ℕ0
6041, 1deccl 12671 . . . . . . . . 9 393216 ∈ ℕ0
61 eqid 2730 . . . . . . . . 9 3932160 = 3932160
62 eqid 2730 . . . . . . . . 9 327680 = 327680
63 eqid 2730 . . . . . . . . . 10 393216 = 393216
64 eqid 2730 . . . . . . . . . 10 32768 = 32768
65 7p1e8 12337 . . . . . . . . . . 11 (7 + 1) = 8
66 eqid 2730 . . . . . . . . . . . 12 39321 = 39321
67 eqid 2730 . . . . . . . . . . . 12 3276 = 3276
68 eqid 2730 . . . . . . . . . . . . 13 3932 = 3932
69 eqid 2730 . . . . . . . . . . . . 13 327 = 327
70 eqid 2730 . . . . . . . . . . . . . 14 393 = 393
71 eqid 2730 . . . . . . . . . . . . . 14 32 = 32
72 eqid 2730 . . . . . . . . . . . . . . 15 39 = 39
73 3p1e4 12333 . . . . . . . . . . . . . . 15 (3 + 1) = 4
74 9p3e12 12744 . . . . . . . . . . . . . . 15 (9 + 3) = 12
755, 26, 5, 72, 73, 24, 74decaddci 12717 . . . . . . . . . . . . . 14 (39 + 3) = 42
76 3p2e5 12339 . . . . . . . . . . . . . 14 (3 + 2) = 5
7737, 5, 5, 24, 70, 71, 75, 76decadd 12710 . . . . . . . . . . . . 13 (393 + 32) = 425
78 7cn 12287 . . . . . . . . . . . . . 14 7 ∈ ℂ
79 2cn 12268 . . . . . . . . . . . . . 14 2 ∈ ℂ
80 7p2e9 12349 . . . . . . . . . . . . . 14 (7 + 2) = 9
8178, 79, 80addcomli 11373 . . . . . . . . . . . . 13 (2 + 7) = 9
8238, 24, 56, 30, 68, 69, 77, 81decadd 12710 . . . . . . . . . . . 12 (3932 + 327) = 4259
83 6cn 12284 . . . . . . . . . . . . 13 6 ∈ ℂ
84 ax-1cn 11133 . . . . . . . . . . . . 13 1 ∈ ℂ
85 6p1e7 12336 . . . . . . . . . . . . 13 (6 + 1) = 7
8683, 84, 85addcomli 11373 . . . . . . . . . . . 12 (1 + 6) = 7
8739, 40, 57, 1, 66, 67, 82, 86decadd 12710 . . . . . . . . . . 11 (39321 + 3276) = 42597
8852, 30, 65, 87decsuc 12687 . . . . . . . . . 10 ((39321 + 3276) + 1) = 42598
89 8cn 12290 . . . . . . . . . . 11 8 ∈ ℂ
90 8p6e14 12740 . . . . . . . . . . 11 (8 + 6) = 14
9189, 83, 90addcomli 11373 . . . . . . . . . 10 (6 + 8) = 14
9241, 1, 58, 35, 63, 64, 88, 23, 91decaddc 12711 . . . . . . . . 9 (393216 + 32768) = 425984
93 00id 11356 . . . . . . . . 9 (0 + 0) = 0
9460, 33, 59, 33, 61, 62, 92, 93decadd 12710 . . . . . . . 8 (3932160 + 327680) = 4259840
9594deceq1i 12663 . . . . . . 7 (3932160 + 327680)0 = 42598400
96 eqid 2730 . . . . . . . 8 4259840 = 4259840
97 eqid 2730 . . . . . . . . 9 425984 = 425984
98 5p1e6 12335 . . . . . . . . . 10 (5 + 1) = 6
99 eqid 2730 . . . . . . . . . . 11 42598 = 42598
100 1p1e2 12313 . . . . . . . . . . . 12 (1 + 1) = 2
101 eqid 2730 . . . . . . . . . . . . 13 4259 = 4259
102 8p1e9 12338 . . . . . . . . . . . . . 14 (8 + 1) = 9
103 eqid 2730 . . . . . . . . . . . . . . 15 425 = 425
104 5p3e8 12345 . . . . . . . . . . . . . . 15 (5 + 3) = 8
10525, 2, 5, 103, 104decaddi 12716 . . . . . . . . . . . . . 14 (425 + 3) = 428
10625, 35, 102, 105decsuc 12687 . . . . . . . . . . . . 13 ((425 + 3) + 1) = 429
107 9p2e11 12743 . . . . . . . . . . . . 13 (9 + 2) = 11
10851, 26, 5, 24, 101, 71, 106, 40, 107decaddc 12711 . . . . . . . . . . . 12 (4259 + 32) = 4291
10927, 40, 100, 108decsuc 12687 . . . . . . . . . . 11 ((4259 + 32) + 1) = 4292
110 8p7e15 12741 . . . . . . . . . . 11 (8 + 7) = 15
11152, 35, 56, 30, 99, 69, 109, 2, 110decaddc 12711 . . . . . . . . . 10 (42598 + 327) = 42925
11242, 2, 98, 111decsuc 12687 . . . . . . . . 9 ((42598 + 327) + 1) = 42926
113 4cn 12278 . . . . . . . . . 10 4 ∈ ℂ
114 6p4e10 12728 . . . . . . . . . 10 (6 + 4) = 10
11583, 113, 114addcomli 11373 . . . . . . . . 9 (4 + 6) = 10
11653, 23, 57, 1, 97, 67, 112, 33, 115decaddc 12711 . . . . . . . 8 (425984 + 3276) = 429260
11789addlidi 11369 . . . . . . . 8 (0 + 8) = 8
11854, 33, 58, 35, 96, 64, 116, 117decadd 12710 . . . . . . 7 (4259840 + 32768) = 4292608
11955, 33, 59, 33, 95, 62, 118, 93decadd 12710 . . . . . 6 ((3932160 + 327680)0 + 327680) = 42926080
120119deceq1i 12663 . . . . 5 ((3932160 + 327680)0 + 327680)0 = 429260800
121 eqid 2730 . . . . 5 196608 = 196608
12245, 49decaddm10 12715 . . . . . 6 (42926080 + 19660) = (4292608 + 1966)0
123 eqid 2730 . . . . . . . 8 4292608 = 4292608
124 eqid 2730 . . . . . . . 8 1966 = 1966
125 eqid 2730 . . . . . . . . . 10 429260 = 429260
126 eqid 2730 . . . . . . . . . 10 196 = 196
127 eqid 2730 . . . . . . . . . . 11 42926 = 42926
128 eqid 2730 . . . . . . . . . . 11 19 = 19
129 2p1e3 12330 . . . . . . . . . . . . 13 (2 + 1) = 3
130 eqid 2730 . . . . . . . . . . . . 13 4292 = 4292
13127, 24, 129, 130decsuc 12687 . . . . . . . . . . . 12 (4292 + 1) = 4293
13227, 5, 73, 131decsuc 12687 . . . . . . . . . . 11 ((4292 + 1) + 1) = 4294
133 9cn 12293 . . . . . . . . . . . 12 9 ∈ ℂ
134 9p6e15 12747 . . . . . . . . . . . 12 (9 + 6) = 15
135133, 83, 134addcomli 11373 . . . . . . . . . . 11 (6 + 9) = 15
13642, 1, 40, 26, 127, 128, 132, 2, 135decaddc 12711 . . . . . . . . . 10 (42926 + 19) = 42945
13783addlidi 11369 . . . . . . . . . 10 (0 + 6) = 6
13843, 33, 47, 1, 125, 126, 136, 137decadd 12710 . . . . . . . . 9 (429260 + 196) = 429456
13929, 1, 85, 138decsuc 12687 . . . . . . . 8 ((429260 + 196) + 1) = 429457
14044, 35, 48, 1, 123, 124, 139, 23, 90decaddc 12711 . . . . . . 7 (4292608 + 1966) = 4294574
141140deceq1i 12663 . . . . . 6 (4292608 + 1966)0 = 42945740
142122, 141eqtri 2753 . . . . 5 (42926080 + 19660) = 42945740
14346, 33, 50, 35, 120, 121, 142, 117decadd 12710 . . . 4 (((3932160 + 327680)0 + 327680)0 + 196608) = 429457408
144143deceq1i 12663 . . 3 (((3932160 + 327680)0 + 327680)0 + 196608)0 = 4294574080
145 eqid 2730 . . . 4 429457408 = 429457408
146 eqid 2730 . . . . 5 42945740 = 42945740
147 eqid 2730 . . . . . 6 4294574 = 4294574
148 eqid 2730 . . . . . . 7 429457 = 429457
149 eqid 2730 . . . . . . . . 9 42945 = 42945
15028, 2, 5, 149, 104decaddi 12716 . . . . . . . 8 (42945 + 3) = 42948
15128, 35, 102, 150decsuc 12687 . . . . . . 7 ((42945 + 3) + 1) = 42949
152 9p7e16 12748 . . . . . . . 8 (9 + 7) = 16
153133, 78, 152addcomli 11373 . . . . . . 7 (7 + 9) = 16
15429, 30, 5, 26, 148, 72, 151, 1, 153decaddc 12711 . . . . . 6 (429457 + 39) = 429496
155 4p3e7 12342 . . . . . 6 (4 + 3) = 7
15631, 23, 37, 5, 147, 70, 154, 155decadd 12710 . . . . 5 (4294574 + 393) = 4294967
15779addlidi 11369 . . . . 5 (0 + 2) = 2
15832, 33, 38, 24, 146, 68, 156, 157decadd 12710 . . . 4 (42945740 + 3932) = 42949672
15934, 35, 39, 40, 145, 66, 158, 102decadd 12710 . . 3 (429457408 + 39321) = 429496729
16036, 33, 41, 1, 144, 63, 159, 137decadd 12710 . 2 ((((3932160 + 327680)0 + 327680)0 + 196608)0 + 393216) = 4294967296
1619, 22, 1603eqtri 2757 1 (65536↑2) = 4294967296
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  2c2 12248  3c3 12249  4c4 12250  5c5 12251  6c6 12252  7c7 12253  8c8 12254  9c9 12255  cdc 12656  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-seq 13974  df-exp 14034
This theorem is referenced by:  fmtno5  47562
  Copyright terms: Public domain W3C validator