Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnwe2 Structured version   Visualization version   GIF version

Theorem fnwe2 43044
Description: A well-ordering can be constructed on a partitioned set by patching together well-orderings on each partition using a well-ordering on the partitions themselves. Similar to fnwe 8136 but does not require the within-partition ordering to be globally well. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
fnwe2.su (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
fnwe2.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
fnwe2.s ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
fnwe2.f (𝜑 → (𝐹𝐴):𝐴𝐵)
fnwe2.r (𝜑𝑅 We 𝐵)
Assertion
Ref Expression
fnwe2 (𝜑𝑇 We 𝐴)
Distinct variable groups:   𝑦,𝑈,𝑧   𝑥,𝑆,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧)   𝑅(𝑧)   𝑆(𝑧)   𝑇(𝑥,𝑦,𝑧)   𝑈(𝑥)

Proof of Theorem fnwe2
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnwe2.su . . . . . 6 (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
2 fnwe2.t . . . . . 6 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
3 fnwe2.s . . . . . . 7 ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
43adantlr 715 . . . . . 6 (((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) ∧ 𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
5 fnwe2.f . . . . . . 7 (𝜑 → (𝐹𝐴):𝐴𝐵)
65adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) → (𝐹𝐴):𝐴𝐵)
7 fnwe2.r . . . . . . 7 (𝜑𝑅 We 𝐵)
87adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) → 𝑅 We 𝐵)
9 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) → 𝑎𝐴)
10 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) → 𝑎 ≠ ∅)
111, 2, 4, 6, 8, 9, 10fnwe2lem2 43042 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) → ∃𝑐𝑎𝑑𝑎 ¬ 𝑑𝑇𝑐)
1211ex 412 . . . 4 (𝜑 → ((𝑎𝐴𝑎 ≠ ∅) → ∃𝑐𝑎𝑑𝑎 ¬ 𝑑𝑇𝑐))
1312alrimiv 1927 . . 3 (𝜑 → ∀𝑎((𝑎𝐴𝑎 ≠ ∅) → ∃𝑐𝑎𝑑𝑎 ¬ 𝑑𝑇𝑐))
14 df-fr 5611 . . 3 (𝑇 Fr 𝐴 ↔ ∀𝑎((𝑎𝐴𝑎 ≠ ∅) → ∃𝑐𝑎𝑑𝑎 ¬ 𝑑𝑇𝑐))
1513, 14sylibr 234 . 2 (𝜑𝑇 Fr 𝐴)
163adantlr 715 . . . 4 (((𝜑 ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
175adantr 480 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → (𝐹𝐴):𝐴𝐵)
187adantr 480 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → 𝑅 We 𝐵)
19 simprl 770 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → 𝑎𝐴)
20 simprr 772 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝐴)
211, 2, 16, 17, 18, 19, 20fnwe2lem3 43043 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎))
2221ralrimivva 3188 . 2 (𝜑 → ∀𝑎𝐴𝑏𝐴 (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎))
23 dfwe2 7773 . 2 (𝑇 We 𝐴 ↔ (𝑇 Fr 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎)))
2415, 22, 23sylanbrc 583 1 (𝜑𝑇 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3o 1085  wal 1538   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  wss 3931  c0 4313   class class class wbr 5124  {copab 5186   Fr wfr 5608   We wwe 5610  cres 5661  wf 6532  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544
This theorem is referenced by:  aomclem4  43048
  Copyright terms: Public domain W3C validator