| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnwe2 | Structured version Visualization version GIF version | ||
| Description: A well-ordering can be constructed on a partitioned set by patching together well-orderings on each partition using a well-ordering on the partitions themselves. Similar to fnwe 8136 but does not require the within-partition ordering to be globally well. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| fnwe2.su | ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) |
| fnwe2.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} |
| fnwe2.s | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
| fnwe2.f | ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝐵) |
| fnwe2.r | ⊢ (𝜑 → 𝑅 We 𝐵) |
| Ref | Expression |
|---|---|
| fnwe2 | ⊢ (𝜑 → 𝑇 We 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnwe2.su | . . . . . 6 ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) | |
| 2 | fnwe2.t | . . . . . 6 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} | |
| 3 | fnwe2.s | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) | |
| 4 | 3 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅)) ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
| 5 | fnwe2.f | . . . . . . 7 ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝐵) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅)) → (𝐹 ↾ 𝐴):𝐴⟶𝐵) |
| 7 | fnwe2.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 We 𝐵) | |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅)) → 𝑅 We 𝐵) |
| 9 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅)) → 𝑎 ⊆ 𝐴) | |
| 10 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅)) → 𝑎 ≠ ∅) | |
| 11 | 1, 2, 4, 6, 8, 9, 10 | fnwe2lem2 43042 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅)) → ∃𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑎 ¬ 𝑑𝑇𝑐) |
| 12 | 11 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅) → ∃𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑎 ¬ 𝑑𝑇𝑐)) |
| 13 | 12 | alrimiv 1927 | . . 3 ⊢ (𝜑 → ∀𝑎((𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅) → ∃𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑎 ¬ 𝑑𝑇𝑐)) |
| 14 | df-fr 5611 | . . 3 ⊢ (𝑇 Fr 𝐴 ↔ ∀𝑎((𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅) → ∃𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑎 ¬ 𝑑𝑇𝑐)) | |
| 15 | 13, 14 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑇 Fr 𝐴) |
| 16 | 3 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
| 17 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝐹 ↾ 𝐴):𝐴⟶𝐵) |
| 18 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑅 We 𝐵) |
| 19 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑎 ∈ 𝐴) | |
| 20 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑏 ∈ 𝐴) | |
| 21 | 1, 2, 16, 17, 18, 19, 20 | fnwe2lem3 43043 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑇𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑇𝑎)) |
| 22 | 21 | ralrimivva 3188 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑇𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑇𝑎)) |
| 23 | dfwe2 7773 | . 2 ⊢ (𝑇 We 𝐴 ↔ (𝑇 Fr 𝐴 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑇𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑇𝑎))) | |
| 24 | 15, 22, 23 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝑇 We 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 {crab 3420 ⊆ wss 3931 ∅c0 4313 class class class wbr 5124 {copab 5186 Fr wfr 5608 We wwe 5610 ↾ cres 5661 ⟶wf 6532 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 |
| This theorem is referenced by: aomclem4 43048 |
| Copyright terms: Public domain | W3C validator |