![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnwe2 | Structured version Visualization version GIF version |
Description: A well-ordering can be constructed on a partitioned set by patching together well-orderings on each partition using a well-ordering on the partitions themselves. Similar to fnwe 8112 but does not require the within-partition ordering to be globally well. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
Ref | Expression |
---|---|
fnwe2.su | ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) |
fnwe2.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} |
fnwe2.s | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
fnwe2.f | ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝐵) |
fnwe2.r | ⊢ (𝜑 → 𝑅 We 𝐵) |
Ref | Expression |
---|---|
fnwe2 | ⊢ (𝜑 → 𝑇 We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnwe2.su | . . . . . 6 ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) | |
2 | fnwe2.t | . . . . . 6 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} | |
3 | fnwe2.s | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) | |
4 | 3 | adantlr 712 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅)) ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
5 | fnwe2.f | . . . . . . 7 ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝐵) | |
6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅)) → (𝐹 ↾ 𝐴):𝐴⟶𝐵) |
7 | fnwe2.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 We 𝐵) | |
8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅)) → 𝑅 We 𝐵) |
9 | simprl 768 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅)) → 𝑎 ⊆ 𝐴) | |
10 | simprr 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅)) → 𝑎 ≠ ∅) | |
11 | 1, 2, 4, 6, 8, 9, 10 | fnwe2lem2 42248 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅)) → ∃𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑎 ¬ 𝑑𝑇𝑐) |
12 | 11 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅) → ∃𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑎 ¬ 𝑑𝑇𝑐)) |
13 | 12 | alrimiv 1922 | . . 3 ⊢ (𝜑 → ∀𝑎((𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅) → ∃𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑎 ¬ 𝑑𝑇𝑐)) |
14 | df-fr 5621 | . . 3 ⊢ (𝑇 Fr 𝐴 ↔ ∀𝑎((𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅) → ∃𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑎 ¬ 𝑑𝑇𝑐)) | |
15 | 13, 14 | sylibr 233 | . 2 ⊢ (𝜑 → 𝑇 Fr 𝐴) |
16 | 3 | adantlr 712 | . . . 4 ⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
17 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝐹 ↾ 𝐴):𝐴⟶𝐵) |
18 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑅 We 𝐵) |
19 | simprl 768 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑎 ∈ 𝐴) | |
20 | simprr 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑏 ∈ 𝐴) | |
21 | 1, 2, 16, 17, 18, 19, 20 | fnwe2lem3 42249 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑇𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑇𝑎)) |
22 | 21 | ralrimivva 3192 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑇𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑇𝑎)) |
23 | dfwe2 7754 | . 2 ⊢ (𝑇 We 𝐴 ↔ (𝑇 Fr 𝐴 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑇𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑇𝑎))) | |
24 | 15, 22, 23 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝑇 We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 844 ∨ w3o 1083 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 ∃wrex 3062 {crab 3424 ⊆ wss 3940 ∅c0 4314 class class class wbr 5138 {copab 5200 Fr wfr 5618 We wwe 5620 ↾ cres 5668 ⟶wf 6529 ‘cfv 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 |
This theorem is referenced by: aomclem4 42254 |
Copyright terms: Public domain | W3C validator |