Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnwe2 Structured version   Visualization version   GIF version

Theorem fnwe2 40916
Description: A well-ordering can be constructed on a partitioned set by patching together well-orderings on each partition using a well-ordering on the partitions themselves. Similar to fnwe 8004 but does not require the within-partition ordering to be globally well. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
fnwe2.su (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
fnwe2.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
fnwe2.s ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
fnwe2.f (𝜑 → (𝐹𝐴):𝐴𝐵)
fnwe2.r (𝜑𝑅 We 𝐵)
Assertion
Ref Expression
fnwe2 (𝜑𝑇 We 𝐴)
Distinct variable groups:   𝑦,𝑈,𝑧   𝑥,𝑆,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧)   𝑅(𝑧)   𝑆(𝑧)   𝑇(𝑥,𝑦,𝑧)   𝑈(𝑥)

Proof of Theorem fnwe2
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnwe2.su . . . . . 6 (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
2 fnwe2.t . . . . . 6 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
3 fnwe2.s . . . . . . 7 ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
43adantlr 713 . . . . . 6 (((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) ∧ 𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
5 fnwe2.f . . . . . . 7 (𝜑 → (𝐹𝐴):𝐴𝐵)
65adantr 482 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) → (𝐹𝐴):𝐴𝐵)
7 fnwe2.r . . . . . . 7 (𝜑𝑅 We 𝐵)
87adantr 482 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) → 𝑅 We 𝐵)
9 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) → 𝑎𝐴)
10 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) → 𝑎 ≠ ∅)
111, 2, 4, 6, 8, 9, 10fnwe2lem2 40914 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑎 ≠ ∅)) → ∃𝑐𝑎𝑑𝑎 ¬ 𝑑𝑇𝑐)
1211ex 414 . . . 4 (𝜑 → ((𝑎𝐴𝑎 ≠ ∅) → ∃𝑐𝑎𝑑𝑎 ¬ 𝑑𝑇𝑐))
1312alrimiv 1928 . . 3 (𝜑 → ∀𝑎((𝑎𝐴𝑎 ≠ ∅) → ∃𝑐𝑎𝑑𝑎 ¬ 𝑑𝑇𝑐))
14 df-fr 5555 . . 3 (𝑇 Fr 𝐴 ↔ ∀𝑎((𝑎𝐴𝑎 ≠ ∅) → ∃𝑐𝑎𝑑𝑎 ¬ 𝑑𝑇𝑐))
1513, 14sylibr 233 . 2 (𝜑𝑇 Fr 𝐴)
163adantlr 713 . . . 4 (((𝜑 ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
175adantr 482 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → (𝐹𝐴):𝐴𝐵)
187adantr 482 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → 𝑅 We 𝐵)
19 simprl 769 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → 𝑎𝐴)
20 simprr 771 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝐴)
211, 2, 16, 17, 18, 19, 20fnwe2lem3 40915 . . 3 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎))
2221ralrimivva 3194 . 2 (𝜑 → ∀𝑎𝐴𝑏𝐴 (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎))
23 dfwe2 7656 . 2 (𝑇 We 𝐴 ↔ (𝑇 Fr 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎)))
2415, 22, 23sylanbrc 584 1 (𝜑𝑇 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 845  w3o 1086  wal 1537   = wceq 1539  wcel 2104  wne 2941  wral 3062  wrex 3071  {crab 3284  wss 3892  c0 4262   class class class wbr 5081  {copab 5143   Fr wfr 5552   We wwe 5554  cres 5602  wf 6454  cfv 6458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fv 6466
This theorem is referenced by:  aomclem4  40920
  Copyright terms: Public domain W3C validator