MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frinxp Structured version   Visualization version   GIF version

Theorem frinxp 5782
Description: Intersection of well-founded relation with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
frinxp (𝑅 Fr 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴)

Proof of Theorem frinxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 4002 . . . . . . . . . . 11 (𝑧𝐴 → (𝑥𝑧𝑥𝐴))
2 ssel 4002 . . . . . . . . . . 11 (𝑧𝐴 → (𝑦𝑧𝑦𝐴))
31, 2anim12d 608 . . . . . . . . . 10 (𝑧𝐴 → ((𝑥𝑧𝑦𝑧) → (𝑥𝐴𝑦𝐴)))
4 brinxp 5778 . . . . . . . . . . 11 ((𝑦𝐴𝑥𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
54ancoms 458 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
63, 5syl6 35 . . . . . . . . 9 (𝑧𝐴 → ((𝑥𝑧𝑦𝑧) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
76impl 455 . . . . . . . 8 (((𝑧𝐴𝑥𝑧) ∧ 𝑦𝑧) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
87notbid 318 . . . . . . 7 (((𝑧𝐴𝑥𝑧) ∧ 𝑦𝑧) → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
98ralbidva 3182 . . . . . 6 ((𝑧𝐴𝑥𝑧) → (∀𝑦𝑧 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
109rexbidva 3183 . . . . 5 (𝑧𝐴 → (∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝑧𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
1110adantr 480 . . . 4 ((𝑧𝐴𝑧 ≠ ∅) → (∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝑧𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
1211pm5.74i 271 . . 3 (((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥) ↔ ((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
1312albii 1817 . 2 (∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥) ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
14 df-fr 5652 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥))
15 df-fr 5652 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴 ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
1613, 14, 153bitr4i 303 1 (𝑅 Fr 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535  wcel 2108  wne 2946  wral 3067  wrex 3076  cin 3975  wss 3976  c0 4352   class class class wbr 5166   Fr wfr 5649   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-fr 5652  df-xp 5706
This theorem is referenced by:  weinxp  5784
  Copyright terms: Public domain W3C validator