MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frinxp Structured version   Visualization version   GIF version

Theorem frinxp 5669
Description: Intersection of well-founded relation with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
frinxp (𝑅 Fr 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴)

Proof of Theorem frinxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3914 . . . . . . . . . . 11 (𝑧𝐴 → (𝑥𝑧𝑥𝐴))
2 ssel 3914 . . . . . . . . . . 11 (𝑧𝐴 → (𝑦𝑧𝑦𝐴))
31, 2anim12d 609 . . . . . . . . . 10 (𝑧𝐴 → ((𝑥𝑧𝑦𝑧) → (𝑥𝐴𝑦𝐴)))
4 brinxp 5665 . . . . . . . . . . 11 ((𝑦𝐴𝑥𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
54ancoms 459 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
63, 5syl6 35 . . . . . . . . 9 (𝑧𝐴 → ((𝑥𝑧𝑦𝑧) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
76impl 456 . . . . . . . 8 (((𝑧𝐴𝑥𝑧) ∧ 𝑦𝑧) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
87notbid 318 . . . . . . 7 (((𝑧𝐴𝑥𝑧) ∧ 𝑦𝑧) → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
98ralbidva 3111 . . . . . 6 ((𝑧𝐴𝑥𝑧) → (∀𝑦𝑧 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
109rexbidva 3225 . . . . 5 (𝑧𝐴 → (∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝑧𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
1110adantr 481 . . . 4 ((𝑧𝐴𝑧 ≠ ∅) → (∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝑧𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
1211pm5.74i 270 . . 3 (((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥) ↔ ((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
1312albii 1822 . 2 (∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥) ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
14 df-fr 5544 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥))
15 df-fr 5544 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴 ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
1613, 14, 153bitr4i 303 1 (𝑅 Fr 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537  wcel 2106  wne 2943  wral 3064  wrex 3065  cin 3886  wss 3887  c0 4256   class class class wbr 5074   Fr wfr 5541   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-fr 5544  df-xp 5595
This theorem is referenced by:  weinxp  5671
  Copyright terms: Public domain W3C validator