MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lrrecfr Structured version   Visualization version   GIF version

Theorem lrrecfr 27857
Description: Now we show that 𝑅 is founded over No . (Contributed by Scott Fenton, 19-Aug-2024.)
Hypothesis
Ref Expression
lrrec.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
Assertion
Ref Expression
lrrecfr 𝑅 Fr No
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem lrrecfr
Dummy variables 𝑎 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fr 5572 . 2 (𝑅 Fr No ↔ ∀𝑎((𝑎 No 𝑎 ≠ ∅) → ∃𝑝𝑎𝑞𝑎 ¬ 𝑞𝑅𝑝))
2 bdayfun 27682 . . . . 5 Fun bday
3 imassrn 6022 . . . . . . 7 ( bday 𝑎) ⊆ ran bday
4 bdayrn 27685 . . . . . . 7 ran bday = On
53, 4sseqtri 3984 . . . . . 6 ( bday 𝑎) ⊆ On
6 fvex 6835 . . . . . . . . . . . . 13 ( bday 𝑞) ∈ V
76jctr 524 . . . . . . . . . . . 12 (𝑞𝑎 → (𝑞𝑎 ∧ ( bday 𝑞) ∈ V))
87eximi 1835 . . . . . . . . . . 11 (∃𝑞 𝑞𝑎 → ∃𝑞(𝑞𝑎 ∧ ( bday 𝑞) ∈ V))
9 n0 4304 . . . . . . . . . . 11 (𝑎 ≠ ∅ ↔ ∃𝑞 𝑞𝑎)
10 df-rex 3054 . . . . . . . . . . 11 (∃𝑞𝑎 ( bday 𝑞) ∈ V ↔ ∃𝑞(𝑞𝑎 ∧ ( bday 𝑞) ∈ V))
118, 9, 103imtr4i 292 . . . . . . . . . 10 (𝑎 ≠ ∅ → ∃𝑞𝑎 ( bday 𝑞) ∈ V)
12 isset 3450 . . . . . . . . . . . . 13 (( bday 𝑞) ∈ V ↔ ∃𝑝 𝑝 = ( bday 𝑞))
13 eqcom 2736 . . . . . . . . . . . . . 14 (𝑝 = ( bday 𝑞) ↔ ( bday 𝑞) = 𝑝)
1413exbii 1848 . . . . . . . . . . . . 13 (∃𝑝 𝑝 = ( bday 𝑞) ↔ ∃𝑝( bday 𝑞) = 𝑝)
1512, 14bitri 275 . . . . . . . . . . . 12 (( bday 𝑞) ∈ V ↔ ∃𝑝( bday 𝑞) = 𝑝)
1615rexbii 3076 . . . . . . . . . . 11 (∃𝑞𝑎 ( bday 𝑞) ∈ V ↔ ∃𝑞𝑎𝑝( bday 𝑞) = 𝑝)
17 rexcom4 3256 . . . . . . . . . . 11 (∃𝑞𝑎𝑝( bday 𝑞) = 𝑝 ↔ ∃𝑝𝑞𝑎 ( bday 𝑞) = 𝑝)
1816, 17bitri 275 . . . . . . . . . 10 (∃𝑞𝑎 ( bday 𝑞) ∈ V ↔ ∃𝑝𝑞𝑎 ( bday 𝑞) = 𝑝)
1911, 18sylib 218 . . . . . . . . 9 (𝑎 ≠ ∅ → ∃𝑝𝑞𝑎 ( bday 𝑞) = 𝑝)
2019adantl 481 . . . . . . . 8 ((𝑎 No 𝑎 ≠ ∅) → ∃𝑝𝑞𝑎 ( bday 𝑞) = 𝑝)
21 bdayfn 27683 . . . . . . . . . . 11 bday Fn No
22 fvelimab 6895 . . . . . . . . . . 11 (( bday Fn No 𝑎 No ) → (𝑝 ∈ ( bday 𝑎) ↔ ∃𝑞𝑎 ( bday 𝑞) = 𝑝))
2321, 22mpan 690 . . . . . . . . . 10 (𝑎 No → (𝑝 ∈ ( bday 𝑎) ↔ ∃𝑞𝑎 ( bday 𝑞) = 𝑝))
2423adantr 480 . . . . . . . . 9 ((𝑎 No 𝑎 ≠ ∅) → (𝑝 ∈ ( bday 𝑎) ↔ ∃𝑞𝑎 ( bday 𝑞) = 𝑝))
2524exbidv 1921 . . . . . . . 8 ((𝑎 No 𝑎 ≠ ∅) → (∃𝑝 𝑝 ∈ ( bday 𝑎) ↔ ∃𝑝𝑞𝑎 ( bday 𝑞) = 𝑝))
2620, 25mpbird 257 . . . . . . 7 ((𝑎 No 𝑎 ≠ ∅) → ∃𝑝 𝑝 ∈ ( bday 𝑎))
27 n0 4304 . . . . . . 7 (( bday 𝑎) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ ( bday 𝑎))
2826, 27sylibr 234 . . . . . 6 ((𝑎 No 𝑎 ≠ ∅) → ( bday 𝑎) ≠ ∅)
29 onint 7726 . . . . . 6 ((( bday 𝑎) ⊆ On ∧ ( bday 𝑎) ≠ ∅) → ( bday 𝑎) ∈ ( bday 𝑎))
305, 28, 29sylancr 587 . . . . 5 ((𝑎 No 𝑎 ≠ ∅) → ( bday 𝑎) ∈ ( bday 𝑎))
31 fvelima 6888 . . . . 5 ((Fun bday ( bday 𝑎) ∈ ( bday 𝑎)) → ∃𝑝𝑎 ( bday 𝑝) = ( bday 𝑎))
322, 30, 31sylancr 587 . . . 4 ((𝑎 No 𝑎 ≠ ∅) → ∃𝑝𝑎 ( bday 𝑝) = ( bday 𝑎))
33 fnfvima 7169 . . . . . . . . . 10 (( bday Fn No 𝑎 No 𝑞𝑎) → ( bday 𝑞) ∈ ( bday 𝑎))
3421, 33mp3an1 1450 . . . . . . . . 9 ((𝑎 No 𝑞𝑎) → ( bday 𝑞) ∈ ( bday 𝑎))
3534adantlr 715 . . . . . . . 8 (((𝑎 No 𝑎 ≠ ∅) ∧ 𝑞𝑎) → ( bday 𝑞) ∈ ( bday 𝑎))
36 onnmin 7734 . . . . . . . 8 ((( bday 𝑎) ⊆ On ∧ ( bday 𝑞) ∈ ( bday 𝑎)) → ¬ ( bday 𝑞) ∈ ( bday 𝑎))
375, 35, 36sylancr 587 . . . . . . 7 (((𝑎 No 𝑎 ≠ ∅) ∧ 𝑞𝑎) → ¬ ( bday 𝑞) ∈ ( bday 𝑎))
3837ralrimiva 3121 . . . . . 6 ((𝑎 No 𝑎 ≠ ∅) → ∀𝑞𝑎 ¬ ( bday 𝑞) ∈ ( bday 𝑎))
39 eleq2 2817 . . . . . . . 8 (( bday 𝑝) = ( bday 𝑎) → (( bday 𝑞) ∈ ( bday 𝑝) ↔ ( bday 𝑞) ∈ ( bday 𝑎)))
4039notbid 318 . . . . . . 7 (( bday 𝑝) = ( bday 𝑎) → (¬ ( bday 𝑞) ∈ ( bday 𝑝) ↔ ¬ ( bday 𝑞) ∈ ( bday 𝑎)))
4140ralbidv 3152 . . . . . 6 (( bday 𝑝) = ( bday 𝑎) → (∀𝑞𝑎 ¬ ( bday 𝑞) ∈ ( bday 𝑝) ↔ ∀𝑞𝑎 ¬ ( bday 𝑞) ∈ ( bday 𝑎)))
4238, 41syl5ibrcom 247 . . . . 5 ((𝑎 No 𝑎 ≠ ∅) → (( bday 𝑝) = ( bday 𝑎) → ∀𝑞𝑎 ¬ ( bday 𝑞) ∈ ( bday 𝑝)))
4342reximdv 3144 . . . 4 ((𝑎 No 𝑎 ≠ ∅) → (∃𝑝𝑎 ( bday 𝑝) = ( bday 𝑎) → ∃𝑝𝑎𝑞𝑎 ¬ ( bday 𝑞) ∈ ( bday 𝑝)))
4432, 43mpd 15 . . 3 ((𝑎 No 𝑎 ≠ ∅) → ∃𝑝𝑎𝑞𝑎 ¬ ( bday 𝑞) ∈ ( bday 𝑝))
45 simpll 766 . . . . . . . . 9 (((𝑎 No 𝑎 ≠ ∅) ∧ (𝑝𝑎𝑞𝑎)) → 𝑎 No )
46 simprr 772 . . . . . . . . 9 (((𝑎 No 𝑎 ≠ ∅) ∧ (𝑝𝑎𝑞𝑎)) → 𝑞𝑎)
4745, 46sseldd 3936 . . . . . . . 8 (((𝑎 No 𝑎 ≠ ∅) ∧ (𝑝𝑎𝑞𝑎)) → 𝑞 No )
48 simprl 770 . . . . . . . . 9 (((𝑎 No 𝑎 ≠ ∅) ∧ (𝑝𝑎𝑞𝑎)) → 𝑝𝑎)
4945, 48sseldd 3936 . . . . . . . 8 (((𝑎 No 𝑎 ≠ ∅) ∧ (𝑝𝑎𝑞𝑎)) → 𝑝 No )
50 lrrec.1 . . . . . . . . 9 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
5150lrrecval2 27854 . . . . . . . 8 ((𝑞 No 𝑝 No ) → (𝑞𝑅𝑝 ↔ ( bday 𝑞) ∈ ( bday 𝑝)))
5247, 49, 51syl2anc 584 . . . . . . 7 (((𝑎 No 𝑎 ≠ ∅) ∧ (𝑝𝑎𝑞𝑎)) → (𝑞𝑅𝑝 ↔ ( bday 𝑞) ∈ ( bday 𝑝)))
5352notbid 318 . . . . . 6 (((𝑎 No 𝑎 ≠ ∅) ∧ (𝑝𝑎𝑞𝑎)) → (¬ 𝑞𝑅𝑝 ↔ ¬ ( bday 𝑞) ∈ ( bday 𝑝)))
5453anassrs 467 . . . . 5 ((((𝑎 No 𝑎 ≠ ∅) ∧ 𝑝𝑎) ∧ 𝑞𝑎) → (¬ 𝑞𝑅𝑝 ↔ ¬ ( bday 𝑞) ∈ ( bday 𝑝)))
5554ralbidva 3150 . . . 4 (((𝑎 No 𝑎 ≠ ∅) ∧ 𝑝𝑎) → (∀𝑞𝑎 ¬ 𝑞𝑅𝑝 ↔ ∀𝑞𝑎 ¬ ( bday 𝑞) ∈ ( bday 𝑝)))
5655rexbidva 3151 . . 3 ((𝑎 No 𝑎 ≠ ∅) → (∃𝑝𝑎𝑞𝑎 ¬ 𝑞𝑅𝑝 ↔ ∃𝑝𝑎𝑞𝑎 ¬ ( bday 𝑞) ∈ ( bday 𝑝)))
5744, 56mpbird 257 . 2 ((𝑎 No 𝑎 ≠ ∅) → ∃𝑝𝑎𝑞𝑎 ¬ 𝑞𝑅𝑝)
581, 57mpgbir 1799 1 𝑅 Fr No
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3436  cun 3901  wss 3903  c0 4284   cint 4896   class class class wbr 5092  {copab 5154   Fr wfr 5569  ran crn 5620  cima 5622  Oncon0 6307  Fun wfun 6476   Fn wfn 6477  cfv 6482   No csur 27549   bday cbday 27551   L cleft 27757   R cright 27758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553  df-bday 27554  df-sslt 27692  df-scut 27694  df-made 27759  df-old 27760  df-left 27762  df-right 27763
This theorem is referenced by:  noinds  27859  norecfn  27860  norecov  27861  noxpordfr  27865  no2indslem  27868  no3inds  27872
  Copyright terms: Public domain W3C validator