Step | Hyp | Ref
| Expression |
1 | | df-fr 5544 |
. 2
⊢ (𝑅 Fr No
↔ ∀𝑎((𝑎 ⊆ No
∧ 𝑎 ≠ ∅)
→ ∃𝑝 ∈
𝑎 ∀𝑞 ∈ 𝑎 ¬ 𝑞𝑅𝑝)) |
2 | | bdayfun 33967 |
. . . . 5
⊢ Fun bday |
3 | | imassrn 5980 |
. . . . . . 7
⊢ ( bday “ 𝑎) ⊆ ran bday
|
4 | | bdayrn 33970 |
. . . . . . 7
⊢ ran bday = On |
5 | 3, 4 | sseqtri 3957 |
. . . . . 6
⊢ ( bday “ 𝑎) ⊆ On |
6 | | fvex 6787 |
. . . . . . . . . . . . 13
⊢ ( bday ‘𝑞) ∈ V |
7 | 6 | jctr 525 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ 𝑎 → (𝑞 ∈ 𝑎 ∧ ( bday
‘𝑞) ∈
V)) |
8 | 7 | eximi 1837 |
. . . . . . . . . . 11
⊢
(∃𝑞 𝑞 ∈ 𝑎 → ∃𝑞(𝑞 ∈ 𝑎 ∧ ( bday
‘𝑞) ∈
V)) |
9 | | n0 4280 |
. . . . . . . . . . 11
⊢ (𝑎 ≠ ∅ ↔
∃𝑞 𝑞 ∈ 𝑎) |
10 | | df-rex 3070 |
. . . . . . . . . . 11
⊢
(∃𝑞 ∈
𝑎 (
bday ‘𝑞)
∈ V ↔ ∃𝑞(𝑞 ∈ 𝑎 ∧ ( bday
‘𝑞) ∈
V)) |
11 | 8, 9, 10 | 3imtr4i 292 |
. . . . . . . . . 10
⊢ (𝑎 ≠ ∅ →
∃𝑞 ∈ 𝑎 ( bday
‘𝑞) ∈
V) |
12 | | isset 3445 |
. . . . . . . . . . . . 13
⊢ (( bday ‘𝑞) ∈ V ↔ ∃𝑝 𝑝 = ( bday
‘𝑞)) |
13 | | eqcom 2745 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = ( bday
‘𝑞) ↔
( bday ‘𝑞) = 𝑝) |
14 | 13 | exbii 1850 |
. . . . . . . . . . . . 13
⊢
(∃𝑝 𝑝 = ( bday
‘𝑞) ↔
∃𝑝( bday ‘𝑞) = 𝑝) |
15 | 12, 14 | bitri 274 |
. . . . . . . . . . . 12
⊢ (( bday ‘𝑞) ∈ V ↔ ∃𝑝( bday
‘𝑞) = 𝑝) |
16 | 15 | rexbii 3181 |
. . . . . . . . . . 11
⊢
(∃𝑞 ∈
𝑎 (
bday ‘𝑞)
∈ V ↔ ∃𝑞
∈ 𝑎 ∃𝑝( bday
‘𝑞) = 𝑝) |
17 | | rexcom4 3233 |
. . . . . . . . . . 11
⊢
(∃𝑞 ∈
𝑎 ∃𝑝( bday
‘𝑞) = 𝑝 ↔ ∃𝑝∃𝑞 ∈ 𝑎 ( bday
‘𝑞) = 𝑝) |
18 | 16, 17 | bitri 274 |
. . . . . . . . . 10
⊢
(∃𝑞 ∈
𝑎 (
bday ‘𝑞)
∈ V ↔ ∃𝑝∃𝑞 ∈ 𝑎 ( bday
‘𝑞) = 𝑝) |
19 | 11, 18 | sylib 217 |
. . . . . . . . 9
⊢ (𝑎 ≠ ∅ →
∃𝑝∃𝑞 ∈ 𝑎 ( bday
‘𝑞) = 𝑝) |
20 | 19 | adantl 482 |
. . . . . . . 8
⊢ ((𝑎 ⊆
No ∧ 𝑎 ≠
∅) → ∃𝑝∃𝑞 ∈ 𝑎 ( bday
‘𝑞) = 𝑝) |
21 | | bdayfn 33968 |
. . . . . . . . . . 11
⊢ bday Fn No
|
22 | | fvelimab 6841 |
. . . . . . . . . . 11
⊢ (( bday Fn No ∧ 𝑎 ⊆
No ) → (𝑝
∈ ( bday “ 𝑎) ↔ ∃𝑞 ∈ 𝑎 ( bday
‘𝑞) = 𝑝)) |
23 | 21, 22 | mpan 687 |
. . . . . . . . . 10
⊢ (𝑎 ⊆
No → (𝑝 ∈
( bday “ 𝑎) ↔ ∃𝑞 ∈ 𝑎 ( bday
‘𝑞) = 𝑝)) |
24 | 23 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑎 ⊆
No ∧ 𝑎 ≠
∅) → (𝑝 ∈
( bday “ 𝑎) ↔ ∃𝑞 ∈ 𝑎 ( bday
‘𝑞) = 𝑝)) |
25 | 24 | exbidv 1924 |
. . . . . . . 8
⊢ ((𝑎 ⊆
No ∧ 𝑎 ≠
∅) → (∃𝑝
𝑝 ∈ ( bday “ 𝑎) ↔ ∃𝑝∃𝑞 ∈ 𝑎 ( bday
‘𝑞) = 𝑝)) |
26 | 20, 25 | mpbird 256 |
. . . . . . 7
⊢ ((𝑎 ⊆
No ∧ 𝑎 ≠
∅) → ∃𝑝
𝑝 ∈ ( bday “ 𝑎)) |
27 | | n0 4280 |
. . . . . . 7
⊢ (( bday “ 𝑎) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ ( bday
“ 𝑎)) |
28 | 26, 27 | sylibr 233 |
. . . . . 6
⊢ ((𝑎 ⊆
No ∧ 𝑎 ≠
∅) → ( bday “ 𝑎) ≠ ∅) |
29 | | onint 7640 |
. . . . . 6
⊢ ((( bday “ 𝑎) ⊆ On ∧ (
bday “ 𝑎)
≠ ∅) → ∩ ( bday
“ 𝑎) ∈
( bday “ 𝑎)) |
30 | 5, 28, 29 | sylancr 587 |
. . . . 5
⊢ ((𝑎 ⊆
No ∧ 𝑎 ≠
∅) → ∩ ( bday
“ 𝑎) ∈
( bday “ 𝑎)) |
31 | | fvelima 6835 |
. . . . 5
⊢ ((Fun
bday ∧ ∩ ( bday “ 𝑎) ∈ ( bday
“ 𝑎)) →
∃𝑝 ∈ 𝑎 ( bday
‘𝑝) = ∩ ( bday “ 𝑎)) |
32 | 2, 30, 31 | sylancr 587 |
. . . 4
⊢ ((𝑎 ⊆
No ∧ 𝑎 ≠
∅) → ∃𝑝
∈ 𝑎 ( bday ‘𝑝) = ∩ ( bday “ 𝑎)) |
33 | | fnfvima 7109 |
. . . . . . . . . 10
⊢ (( bday Fn No ∧ 𝑎 ⊆
No ∧ 𝑞 ∈
𝑎) → ( bday ‘𝑞) ∈ ( bday
“ 𝑎)) |
34 | 21, 33 | mp3an1 1447 |
. . . . . . . . 9
⊢ ((𝑎 ⊆
No ∧ 𝑞 ∈
𝑎) → ( bday ‘𝑞) ∈ ( bday
“ 𝑎)) |
35 | 34 | adantlr 712 |
. . . . . . . 8
⊢ (((𝑎 ⊆
No ∧ 𝑎 ≠
∅) ∧ 𝑞 ∈
𝑎) → ( bday ‘𝑞) ∈ ( bday
“ 𝑎)) |
36 | | onnmin 7648 |
. . . . . . . 8
⊢ ((( bday “ 𝑎) ⊆ On ∧ (
bday ‘𝑞)
∈ ( bday “ 𝑎)) → ¬ ( bday
‘𝑞) ∈
∩ ( bday “ 𝑎)) |
37 | 5, 35, 36 | sylancr 587 |
. . . . . . 7
⊢ (((𝑎 ⊆
No ∧ 𝑎 ≠
∅) ∧ 𝑞 ∈
𝑎) → ¬ ( bday ‘𝑞) ∈ ∩ ( bday “ 𝑎)) |
38 | 37 | ralrimiva 3103 |
. . . . . 6
⊢ ((𝑎 ⊆
No ∧ 𝑎 ≠
∅) → ∀𝑞
∈ 𝑎 ¬ ( bday ‘𝑞) ∈ ∩ ( bday “ 𝑎)) |
39 | | eleq2 2827 |
. . . . . . . 8
⊢ (( bday ‘𝑝) = ∩ ( bday “ 𝑎) → (( bday
‘𝑞) ∈
( bday ‘𝑝) ↔ ( bday
‘𝑞) ∈
∩ ( bday “ 𝑎))) |
40 | 39 | notbid 318 |
. . . . . . 7
⊢ (( bday ‘𝑝) = ∩ ( bday “ 𝑎) → (¬ ( bday
‘𝑞) ∈
( bday ‘𝑝) ↔ ¬ ( bday
‘𝑞) ∈
∩ ( bday “ 𝑎))) |
41 | 40 | ralbidv 3112 |
. . . . . 6
⊢ (( bday ‘𝑝) = ∩ ( bday “ 𝑎) → (∀𝑞 ∈ 𝑎 ¬ ( bday
‘𝑞) ∈
( bday ‘𝑝) ↔ ∀𝑞 ∈ 𝑎 ¬ ( bday
‘𝑞) ∈
∩ ( bday “ 𝑎))) |
42 | 38, 41 | syl5ibrcom 246 |
. . . . 5
⊢ ((𝑎 ⊆
No ∧ 𝑎 ≠
∅) → (( bday ‘𝑝) = ∩ ( bday “ 𝑎) → ∀𝑞 ∈ 𝑎 ¬ ( bday
‘𝑞) ∈
( bday ‘𝑝))) |
43 | 42 | reximdv 3202 |
. . . 4
⊢ ((𝑎 ⊆
No ∧ 𝑎 ≠
∅) → (∃𝑝
∈ 𝑎 ( bday ‘𝑝) = ∩ ( bday “ 𝑎) → ∃𝑝 ∈ 𝑎 ∀𝑞 ∈ 𝑎 ¬ ( bday
‘𝑞) ∈
( bday ‘𝑝))) |
44 | 32, 43 | mpd 15 |
. . 3
⊢ ((𝑎 ⊆
No ∧ 𝑎 ≠
∅) → ∃𝑝
∈ 𝑎 ∀𝑞 ∈ 𝑎 ¬ ( bday
‘𝑞) ∈
( bday ‘𝑝)) |
45 | | simpll 764 |
. . . . . . . . 9
⊢ (((𝑎 ⊆
No ∧ 𝑎 ≠
∅) ∧ (𝑝 ∈
𝑎 ∧ 𝑞 ∈ 𝑎)) → 𝑎 ⊆ No
) |
46 | | simprr 770 |
. . . . . . . . 9
⊢ (((𝑎 ⊆
No ∧ 𝑎 ≠
∅) ∧ (𝑝 ∈
𝑎 ∧ 𝑞 ∈ 𝑎)) → 𝑞 ∈ 𝑎) |
47 | 45, 46 | sseldd 3922 |
. . . . . . . 8
⊢ (((𝑎 ⊆
No ∧ 𝑎 ≠
∅) ∧ (𝑝 ∈
𝑎 ∧ 𝑞 ∈ 𝑎)) → 𝑞 ∈ No
) |
48 | | simprl 768 |
. . . . . . . . 9
⊢ (((𝑎 ⊆
No ∧ 𝑎 ≠
∅) ∧ (𝑝 ∈
𝑎 ∧ 𝑞 ∈ 𝑎)) → 𝑝 ∈ 𝑎) |
49 | 45, 48 | sseldd 3922 |
. . . . . . . 8
⊢ (((𝑎 ⊆
No ∧ 𝑎 ≠
∅) ∧ (𝑝 ∈
𝑎 ∧ 𝑞 ∈ 𝑎)) → 𝑝 ∈ No
) |
50 | | lrrec.1 |
. . . . . . . . 9
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
51 | 50 | lrrecval2 34097 |
. . . . . . . 8
⊢ ((𝑞 ∈
No ∧ 𝑝 ∈
No ) → (𝑞𝑅𝑝 ↔ ( bday
‘𝑞) ∈
( bday ‘𝑝))) |
52 | 47, 49, 51 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑎 ⊆
No ∧ 𝑎 ≠
∅) ∧ (𝑝 ∈
𝑎 ∧ 𝑞 ∈ 𝑎)) → (𝑞𝑅𝑝 ↔ ( bday
‘𝑞) ∈
( bday ‘𝑝))) |
53 | 52 | notbid 318 |
. . . . . 6
⊢ (((𝑎 ⊆
No ∧ 𝑎 ≠
∅) ∧ (𝑝 ∈
𝑎 ∧ 𝑞 ∈ 𝑎)) → (¬ 𝑞𝑅𝑝 ↔ ¬ ( bday
‘𝑞) ∈
( bday ‘𝑝))) |
54 | 53 | anassrs 468 |
. . . . 5
⊢ ((((𝑎 ⊆
No ∧ 𝑎 ≠
∅) ∧ 𝑝 ∈
𝑎) ∧ 𝑞 ∈ 𝑎) → (¬ 𝑞𝑅𝑝 ↔ ¬ ( bday
‘𝑞) ∈
( bday ‘𝑝))) |
55 | 54 | ralbidva 3111 |
. . . 4
⊢ (((𝑎 ⊆
No ∧ 𝑎 ≠
∅) ∧ 𝑝 ∈
𝑎) → (∀𝑞 ∈ 𝑎 ¬ 𝑞𝑅𝑝 ↔ ∀𝑞 ∈ 𝑎 ¬ ( bday
‘𝑞) ∈
( bday ‘𝑝))) |
56 | 55 | rexbidva 3225 |
. . 3
⊢ ((𝑎 ⊆
No ∧ 𝑎 ≠
∅) → (∃𝑝
∈ 𝑎 ∀𝑞 ∈ 𝑎 ¬ 𝑞𝑅𝑝 ↔ ∃𝑝 ∈ 𝑎 ∀𝑞 ∈ 𝑎 ¬ ( bday
‘𝑞) ∈
( bday ‘𝑝))) |
57 | 44, 56 | mpbird 256 |
. 2
⊢ ((𝑎 ⊆
No ∧ 𝑎 ≠
∅) → ∃𝑝
∈ 𝑎 ∀𝑞 ∈ 𝑎 ¬ 𝑞𝑅𝑝) |
58 | 1, 57 | mpgbir 1802 |
1
⊢ 𝑅 Fr No
|