Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lrrecfr Structured version   Visualization version   GIF version

Theorem lrrecfr 33682
Description: Now we show that 𝑅 is founded over No . (Contributed by Scott Fenton, 19-Aug-2024.)
Hypothesis
Ref Expression
lrrec.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
Assertion
Ref Expression
lrrecfr 𝑅 Fr No
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem lrrecfr
Dummy variables 𝑎 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fr 5487 . 2 (𝑅 Fr No ↔ ∀𝑎((𝑎 No 𝑎 ≠ ∅) → ∃𝑝𝑎𝑞𝑎 ¬ 𝑞𝑅𝑝))
2 bdayfun 33564 . . . . 5 Fun bday
3 imassrn 5917 . . . . . . 7 ( bday 𝑎) ⊆ ran bday
4 bdayrn 33567 . . . . . . 7 ran bday = On
53, 4sseqtri 3930 . . . . . 6 ( bday 𝑎) ⊆ On
6 fvex 6676 . . . . . . . . . . . . 13 ( bday 𝑞) ∈ V
76jctr 528 . . . . . . . . . . . 12 (𝑞𝑎 → (𝑞𝑎 ∧ ( bday 𝑞) ∈ V))
87eximi 1836 . . . . . . . . . . 11 (∃𝑞 𝑞𝑎 → ∃𝑞(𝑞𝑎 ∧ ( bday 𝑞) ∈ V))
9 n0 4247 . . . . . . . . . . 11 (𝑎 ≠ ∅ ↔ ∃𝑞 𝑞𝑎)
10 df-rex 3076 . . . . . . . . . . 11 (∃𝑞𝑎 ( bday 𝑞) ∈ V ↔ ∃𝑞(𝑞𝑎 ∧ ( bday 𝑞) ∈ V))
118, 9, 103imtr4i 295 . . . . . . . . . 10 (𝑎 ≠ ∅ → ∃𝑞𝑎 ( bday 𝑞) ∈ V)
12 isset 3422 . . . . . . . . . . . . 13 (( bday 𝑞) ∈ V ↔ ∃𝑝 𝑝 = ( bday 𝑞))
13 eqcom 2765 . . . . . . . . . . . . . 14 (𝑝 = ( bday 𝑞) ↔ ( bday 𝑞) = 𝑝)
1413exbii 1849 . . . . . . . . . . . . 13 (∃𝑝 𝑝 = ( bday 𝑞) ↔ ∃𝑝( bday 𝑞) = 𝑝)
1512, 14bitri 278 . . . . . . . . . . . 12 (( bday 𝑞) ∈ V ↔ ∃𝑝( bday 𝑞) = 𝑝)
1615rexbii 3175 . . . . . . . . . . 11 (∃𝑞𝑎 ( bday 𝑞) ∈ V ↔ ∃𝑞𝑎𝑝( bday 𝑞) = 𝑝)
17 rexcom4 3177 . . . . . . . . . . 11 (∃𝑞𝑎𝑝( bday 𝑞) = 𝑝 ↔ ∃𝑝𝑞𝑎 ( bday 𝑞) = 𝑝)
1816, 17bitri 278 . . . . . . . . . 10 (∃𝑞𝑎 ( bday 𝑞) ∈ V ↔ ∃𝑝𝑞𝑎 ( bday 𝑞) = 𝑝)
1911, 18sylib 221 . . . . . . . . 9 (𝑎 ≠ ∅ → ∃𝑝𝑞𝑎 ( bday 𝑞) = 𝑝)
2019adantl 485 . . . . . . . 8 ((𝑎 No 𝑎 ≠ ∅) → ∃𝑝𝑞𝑎 ( bday 𝑞) = 𝑝)
21 bdayfn 33565 . . . . . . . . . . 11 bday Fn No
22 fvelimab 6730 . . . . . . . . . . 11 (( bday Fn No 𝑎 No ) → (𝑝 ∈ ( bday 𝑎) ↔ ∃𝑞𝑎 ( bday 𝑞) = 𝑝))
2321, 22mpan 689 . . . . . . . . . 10 (𝑎 No → (𝑝 ∈ ( bday 𝑎) ↔ ∃𝑞𝑎 ( bday 𝑞) = 𝑝))
2423adantr 484 . . . . . . . . 9 ((𝑎 No 𝑎 ≠ ∅) → (𝑝 ∈ ( bday 𝑎) ↔ ∃𝑞𝑎 ( bday 𝑞) = 𝑝))
2524exbidv 1922 . . . . . . . 8 ((𝑎 No 𝑎 ≠ ∅) → (∃𝑝 𝑝 ∈ ( bday 𝑎) ↔ ∃𝑝𝑞𝑎 ( bday 𝑞) = 𝑝))
2620, 25mpbird 260 . . . . . . 7 ((𝑎 No 𝑎 ≠ ∅) → ∃𝑝 𝑝 ∈ ( bday 𝑎))
27 n0 4247 . . . . . . 7 (( bday 𝑎) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ ( bday 𝑎))
2826, 27sylibr 237 . . . . . 6 ((𝑎 No 𝑎 ≠ ∅) → ( bday 𝑎) ≠ ∅)
29 onint 7515 . . . . . 6 ((( bday 𝑎) ⊆ On ∧ ( bday 𝑎) ≠ ∅) → ( bday 𝑎) ∈ ( bday 𝑎))
305, 28, 29sylancr 590 . . . . 5 ((𝑎 No 𝑎 ≠ ∅) → ( bday 𝑎) ∈ ( bday 𝑎))
31 fvelima 6724 . . . . 5 ((Fun bday ( bday 𝑎) ∈ ( bday 𝑎)) → ∃𝑝𝑎 ( bday 𝑝) = ( bday 𝑎))
322, 30, 31sylancr 590 . . . 4 ((𝑎 No 𝑎 ≠ ∅) → ∃𝑝𝑎 ( bday 𝑝) = ( bday 𝑎))
33 fnfvima 6993 . . . . . . . . . 10 (( bday Fn No 𝑎 No 𝑞𝑎) → ( bday 𝑞) ∈ ( bday 𝑎))
3421, 33mp3an1 1445 . . . . . . . . 9 ((𝑎 No 𝑞𝑎) → ( bday 𝑞) ∈ ( bday 𝑎))
3534adantlr 714 . . . . . . . 8 (((𝑎 No 𝑎 ≠ ∅) ∧ 𝑞𝑎) → ( bday 𝑞) ∈ ( bday 𝑎))
36 onnmin 7523 . . . . . . . 8 ((( bday 𝑎) ⊆ On ∧ ( bday 𝑞) ∈ ( bday 𝑎)) → ¬ ( bday 𝑞) ∈ ( bday 𝑎))
375, 35, 36sylancr 590 . . . . . . 7 (((𝑎 No 𝑎 ≠ ∅) ∧ 𝑞𝑎) → ¬ ( bday 𝑞) ∈ ( bday 𝑎))
3837ralrimiva 3113 . . . . . 6 ((𝑎 No 𝑎 ≠ ∅) → ∀𝑞𝑎 ¬ ( bday 𝑞) ∈ ( bday 𝑎))
39 eleq2 2840 . . . . . . . 8 (( bday 𝑝) = ( bday 𝑎) → (( bday 𝑞) ∈ ( bday 𝑝) ↔ ( bday 𝑞) ∈ ( bday 𝑎)))
4039notbid 321 . . . . . . 7 (( bday 𝑝) = ( bday 𝑎) → (¬ ( bday 𝑞) ∈ ( bday 𝑝) ↔ ¬ ( bday 𝑞) ∈ ( bday 𝑎)))
4140ralbidv 3126 . . . . . 6 (( bday 𝑝) = ( bday 𝑎) → (∀𝑞𝑎 ¬ ( bday 𝑞) ∈ ( bday 𝑝) ↔ ∀𝑞𝑎 ¬ ( bday 𝑞) ∈ ( bday 𝑎)))
4238, 41syl5ibrcom 250 . . . . 5 ((𝑎 No 𝑎 ≠ ∅) → (( bday 𝑝) = ( bday 𝑎) → ∀𝑞𝑎 ¬ ( bday 𝑞) ∈ ( bday 𝑝)))
4342reximdv 3197 . . . 4 ((𝑎 No 𝑎 ≠ ∅) → (∃𝑝𝑎 ( bday 𝑝) = ( bday 𝑎) → ∃𝑝𝑎𝑞𝑎 ¬ ( bday 𝑞) ∈ ( bday 𝑝)))
4432, 43mpd 15 . . 3 ((𝑎 No 𝑎 ≠ ∅) → ∃𝑝𝑎𝑞𝑎 ¬ ( bday 𝑞) ∈ ( bday 𝑝))
45 simpll 766 . . . . . . . . 9 (((𝑎 No 𝑎 ≠ ∅) ∧ (𝑝𝑎𝑞𝑎)) → 𝑎 No )
46 simprr 772 . . . . . . . . 9 (((𝑎 No 𝑎 ≠ ∅) ∧ (𝑝𝑎𝑞𝑎)) → 𝑞𝑎)
4745, 46sseldd 3895 . . . . . . . 8 (((𝑎 No 𝑎 ≠ ∅) ∧ (𝑝𝑎𝑞𝑎)) → 𝑞 No )
48 simprl 770 . . . . . . . . 9 (((𝑎 No 𝑎 ≠ ∅) ∧ (𝑝𝑎𝑞𝑎)) → 𝑝𝑎)
4945, 48sseldd 3895 . . . . . . . 8 (((𝑎 No 𝑎 ≠ ∅) ∧ (𝑝𝑎𝑞𝑎)) → 𝑝 No )
50 lrrec.1 . . . . . . . . 9 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
5150lrrecval2 33679 . . . . . . . 8 ((𝑞 No 𝑝 No ) → (𝑞𝑅𝑝 ↔ ( bday 𝑞) ∈ ( bday 𝑝)))
5247, 49, 51syl2anc 587 . . . . . . 7 (((𝑎 No 𝑎 ≠ ∅) ∧ (𝑝𝑎𝑞𝑎)) → (𝑞𝑅𝑝 ↔ ( bday 𝑞) ∈ ( bday 𝑝)))
5352notbid 321 . . . . . 6 (((𝑎 No 𝑎 ≠ ∅) ∧ (𝑝𝑎𝑞𝑎)) → (¬ 𝑞𝑅𝑝 ↔ ¬ ( bday 𝑞) ∈ ( bday 𝑝)))
5453anassrs 471 . . . . 5 ((((𝑎 No 𝑎 ≠ ∅) ∧ 𝑝𝑎) ∧ 𝑞𝑎) → (¬ 𝑞𝑅𝑝 ↔ ¬ ( bday 𝑞) ∈ ( bday 𝑝)))
5554ralbidva 3125 . . . 4 (((𝑎 No 𝑎 ≠ ∅) ∧ 𝑝𝑎) → (∀𝑞𝑎 ¬ 𝑞𝑅𝑝 ↔ ∀𝑞𝑎 ¬ ( bday 𝑞) ∈ ( bday 𝑝)))
5655rexbidva 3220 . . 3 ((𝑎 No 𝑎 ≠ ∅) → (∃𝑝𝑎𝑞𝑎 ¬ 𝑞𝑅𝑝 ↔ ∃𝑝𝑎𝑞𝑎 ¬ ( bday 𝑞) ∈ ( bday 𝑝)))
5744, 56mpbird 260 . 2 ((𝑎 No 𝑎 ≠ ∅) → ∃𝑝𝑎𝑞𝑎 ¬ 𝑞𝑅𝑝)
581, 57mpgbir 1801 1 𝑅 Fr No
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2951  wral 3070  wrex 3071  Vcvv 3409  cun 3858  wss 3860  c0 4227   cint 4841   class class class wbr 5036  {copab 5098   Fr wfr 5484  ran crn 5529  cima 5531  Oncon0 6174  Fun wfun 6334   Fn wfn 6335  cfv 6340   No csur 33440   bday cbday 33442   L cleft 33623   R cright 33624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-wrecs 7963  df-recs 8024  df-1o 8118  df-2o 8119  df-no 33443  df-slt 33444  df-bday 33445  df-sslt 33573  df-scut 33575  df-made 33625  df-old 33626  df-left 33628  df-right 33629
This theorem is referenced by:  noinds  33684  norecfn  33685  norecov  33686  noxpordfr  33690  no2indslem  33693  no3indslem  33697
  Copyright terms: Public domain W3C validator