HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopub2tHIL Structured version   Visualization version   GIF version

Theorem nmopub2tHIL 31427
Description: An upper bound for an operator norm. (Contributed by NM, 13-Dec-2007.) (New usage is discouraged.)
Assertion
Ref Expression
nmopub2tHIL ((𝑇: β„‹βŸΆ β„‹ ∧ (𝐴 ∈ ℝ ∧ 0 ≀ 𝐴) ∧ βˆ€π‘₯ ∈ β„‹ (normβ„Žβ€˜(π‘‡β€˜π‘₯)) ≀ (𝐴 Β· (normβ„Žβ€˜π‘₯))) β†’ (normopβ€˜π‘‡) ≀ 𝐴)
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝑇

Proof of Theorem nmopub2tHIL
StepHypRef Expression
1 df-hba 30486 . 2 β„‹ = (BaseSetβ€˜βŸ¨βŸ¨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©)
2 eqid 2731 . . 3 ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ© = ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©
32hhnm 30688 . 2 normβ„Ž = (normCVβ€˜βŸ¨βŸ¨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©)
4 eqid 2731 . . 3 (⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ© normOpOLD ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©) = (⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ© normOpOLD ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©)
52, 4hhnmoi 31418 . 2 normop = (⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ© normOpOLD ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©)
62hhnv 30682 . 2 ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ© ∈ NrmCVec
71, 1, 3, 3, 5, 6, 6nmoub2i 30291 1 ((𝑇: β„‹βŸΆ β„‹ ∧ (𝐴 ∈ ℝ ∧ 0 ≀ 𝐴) ∧ βˆ€π‘₯ ∈ β„‹ (normβ„Žβ€˜(π‘‡β€˜π‘₯)) ≀ (𝐴 Β· (normβ„Žβ€˜π‘₯))) β†’ (normopβ€˜π‘‡) ≀ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   ∈ wcel 2105  βˆ€wral 3060  βŸ¨cop 4635   class class class wbr 5149  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7412  β„cr 11112  0cc0 11113   Β· cmul 11118   ≀ cle 11254   normOpOLD cnmoo 30258   β„‹chba 30436   +β„Ž cva 30437   Β·β„Ž csm 30438  normβ„Žcno 30440  normopcnop 30462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191  ax-hilex 30516  ax-hfvadd 30517  ax-hvcom 30518  ax-hvass 30519  ax-hv0cl 30520  ax-hvaddid 30521  ax-hfvmul 30522  ax-hvmulid 30523  ax-hvmulass 30524  ax-hvdistr1 30525  ax-hvdistr2 30526  ax-hvmul0 30527  ax-hfi 30596  ax-his1 30599  ax-his2 30600  ax-his3 30601  ax-his4 30602
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-map 8825  df-en 8943  df-dom 8944  df-sdom 8945  df-sup 9440  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-n0 12478  df-z 12564  df-uz 12828  df-rp 12980  df-seq 13972  df-exp 14033  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-grpo 30010  df-gid 30011  df-ginv 30012  df-ablo 30062  df-vc 30076  df-nv 30109  df-va 30112  df-ba 30113  df-sm 30114  df-0v 30115  df-nmcv 30117  df-nmoo 30262  df-hnorm 30485  df-hba 30486  df-hvsub 30488  df-nmop 31356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator