| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmopub2tHIL | Structured version Visualization version GIF version | ||
| Description: An upper bound for an operator norm. (Contributed by NM, 13-Dec-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmopub2tHIL | ⊢ ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) ≤ (𝐴 · (normℎ‘𝑥))) → (normop‘𝑇) ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hba 30949 | . 2 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 2 | eqid 2729 | . . 3 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 3 | 2 | hhnm 31151 | . 2 ⊢ normℎ = (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 4 | eqid 2729 | . . 3 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 normOpOLD 〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (〈〈 +ℎ , ·ℎ 〉, normℎ〉 normOpOLD 〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 5 | 2, 4 | hhnmoi 31881 | . 2 ⊢ normop = (〈〈 +ℎ , ·ℎ 〉, normℎ〉 normOpOLD 〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 6 | 2 | hhnv 31145 | . 2 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
| 7 | 1, 1, 3, 3, 5, 6, 6 | nmoub2i 30754 | 1 ⊢ ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) ≤ (𝐴 · (normℎ‘𝑥))) → (normop‘𝑇) ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 〈cop 4591 class class class wbr 5102 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℝcr 11045 0cc0 11046 · cmul 11051 ≤ cle 11187 normOpOLD cnmoo 30721 ℋchba 30899 +ℎ cva 30900 ·ℎ csm 30901 normℎcno 30903 normopcnop 30925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 ax-hilex 30979 ax-hfvadd 30980 ax-hvcom 30981 ax-hvass 30982 ax-hv0cl 30983 ax-hvaddid 30984 ax-hfvmul 30985 ax-hvmulid 30986 ax-hvmulass 30987 ax-hvdistr1 30988 ax-hvdistr2 30989 ax-hvmul0 30990 ax-hfi 31059 ax-his1 31062 ax-his2 31063 ax-his3 31064 ax-his4 31065 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-n0 12421 df-z 12508 df-uz 12772 df-rp 12930 df-seq 13945 df-exp 14005 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-grpo 30473 df-gid 30474 df-ginv 30475 df-ablo 30525 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-nmcv 30580 df-nmoo 30725 df-hnorm 30948 df-hba 30949 df-hvsub 30951 df-nmop 31819 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |