HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopub2tHIL Structured version   Visualization version   GIF version

Theorem nmopub2tHIL 29225
Description: An upper bound for an operator norm. (Contributed by NM, 13-Dec-2007.) (New usage is discouraged.)
Assertion
Ref Expression
nmopub2tHIL ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → (normop𝑇) ≤ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem nmopub2tHIL
StepHypRef Expression
1 df-hba 28282 . 2 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
2 eqid 2765 . . 3 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
32hhnm 28484 . 2 norm = (normCV‘⟨⟨ + , · ⟩, norm⟩)
4 eqid 2765 . . 3 (⟨⟨ + , · ⟩, norm⟩ normOpOLD ⟨⟨ + , · ⟩, norm⟩) = (⟨⟨ + , · ⟩, norm⟩ normOpOLD ⟨⟨ + , · ⟩, norm⟩)
52, 4hhnmoi 29216 . 2 normop = (⟨⟨ + , · ⟩, norm⟩ normOpOLD ⟨⟨ + , · ⟩, norm⟩)
62hhnv 28478 . 2 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
71, 1, 3, 3, 5, 6, 6nmoub2i 28085 1 ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) ≤ (𝐴 · (norm𝑥))) → (normop𝑇) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107  wcel 2155  wral 3055  cop 4340   class class class wbr 4809  wf 6064  cfv 6068  (class class class)co 6842  cr 10188  0cc0 10189   · cmul 10194  cle 10329   normOpOLD cnmoo 28052  chba 28232   + cva 28233   · csm 28234  normcno 28236  normopcnop 28258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-hilex 28312  ax-hfvadd 28313  ax-hvcom 28314  ax-hvass 28315  ax-hv0cl 28316  ax-hvaddid 28317  ax-hfvmul 28318  ax-hvmulid 28319  ax-hvmulass 28320  ax-hvdistr1 28321  ax-hvdistr2 28322  ax-hvmul0 28323  ax-hfi 28392  ax-his1 28395  ax-his2 28396  ax-his3 28397  ax-his4 28398
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-seq 13009  df-exp 13068  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-grpo 27804  df-gid 27805  df-ginv 27806  df-ablo 27856  df-vc 27870  df-nv 27903  df-va 27906  df-ba 27907  df-sm 27908  df-0v 27909  df-nmcv 27911  df-nmoo 28056  df-hnorm 28281  df-hba 28282  df-hvsub 28284  df-nmop 29154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator