![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmopub2tHIL | Structured version Visualization version GIF version |
Description: An upper bound for an operator norm. (Contributed by NM, 13-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmopub2tHIL | β’ ((π: ββΆ β β§ (π΄ β β β§ 0 β€ π΄) β§ βπ₯ β β (normββ(πβπ₯)) β€ (π΄ Β· (normββπ₯))) β (normopβπ) β€ π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hba 30486 | . 2 β’ β = (BaseSetββ¨β¨ +β , Β·β β©, normββ©) | |
2 | eqid 2731 | . . 3 β’ β¨β¨ +β , Β·β β©, normββ© = β¨β¨ +β , Β·β β©, normββ© | |
3 | 2 | hhnm 30688 | . 2 β’ normβ = (normCVββ¨β¨ +β , Β·β β©, normββ©) |
4 | eqid 2731 | . . 3 β’ (β¨β¨ +β , Β·β β©, normββ© normOpOLD β¨β¨ +β , Β·β β©, normββ©) = (β¨β¨ +β , Β·β β©, normββ© normOpOLD β¨β¨ +β , Β·β β©, normββ©) | |
5 | 2, 4 | hhnmoi 31418 | . 2 β’ normop = (β¨β¨ +β , Β·β β©, normββ© normOpOLD β¨β¨ +β , Β·β β©, normββ©) |
6 | 2 | hhnv 30682 | . 2 β’ β¨β¨ +β , Β·β β©, normββ© β NrmCVec |
7 | 1, 1, 3, 3, 5, 6, 6 | nmoub2i 30291 | 1 β’ ((π: ββΆ β β§ (π΄ β β β§ 0 β€ π΄) β§ βπ₯ β β (normββ(πβπ₯)) β€ (π΄ Β· (normββπ₯))) β (normopβπ) β€ π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 β wcel 2105 βwral 3060 β¨cop 4635 class class class wbr 5149 βΆwf 6540 βcfv 6544 (class class class)co 7412 βcr 11112 0cc0 11113 Β· cmul 11118 β€ cle 11254 normOpOLD cnmoo 30258 βchba 30436 +β cva 30437 Β·β csm 30438 normβcno 30440 normopcnop 30462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 ax-hilex 30516 ax-hfvadd 30517 ax-hvcom 30518 ax-hvass 30519 ax-hv0cl 30520 ax-hvaddid 30521 ax-hfvmul 30522 ax-hvmulid 30523 ax-hvmulass 30524 ax-hvdistr1 30525 ax-hvdistr2 30526 ax-hvmul0 30527 ax-hfi 30596 ax-his1 30599 ax-his2 30600 ax-his3 30601 ax-his4 30602 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-sup 9440 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-grpo 30010 df-gid 30011 df-ginv 30012 df-ablo 30062 df-vc 30076 df-nv 30109 df-va 30112 df-ba 30113 df-sm 30114 df-0v 30115 df-nmcv 30117 df-nmoo 30262 df-hnorm 30485 df-hba 30486 df-hvsub 30488 df-nmop 31356 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |