HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimadd Structured version   Visualization version   GIF version

Theorem hlimadd 28441
Description: Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlimadd.3 (𝜑𝐹:ℕ⟶ ℋ)
hlimadd.4 (𝜑𝐺:ℕ⟶ ℋ)
hlimadd.5 (𝜑𝐹𝑣 𝐴)
hlimadd.6 (𝜑𝐺𝑣 𝐵)
hlimadd.7 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹𝑛) + (𝐺𝑛)))
Assertion
Ref Expression
hlimadd (𝜑𝐻𝑣 (𝐴 + 𝐵))
Distinct variable groups:   𝑛,𝐹   𝑛,𝐺   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐻(𝑛)

Proof of Theorem hlimadd
StepHypRef Expression
1 hlimadd.3 . . . . . 6 (𝜑𝐹:ℕ⟶ ℋ)
21ffvelrnda 6549 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℋ)
3 hlimadd.4 . . . . . 6 (𝜑𝐺:ℕ⟶ ℋ)
43ffvelrnda 6549 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℋ)
5 hvaddcl 28260 . . . . 5 (((𝐹𝑛) ∈ ℋ ∧ (𝐺𝑛) ∈ ℋ) → ((𝐹𝑛) + (𝐺𝑛)) ∈ ℋ)
62, 4, 5syl2anc 579 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) + (𝐺𝑛)) ∈ ℋ)
7 hlimadd.7 . . . 4 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹𝑛) + (𝐺𝑛)))
86, 7fmptd 6574 . . 3 (𝜑𝐻:ℕ⟶ ℋ)
9 ax-hilex 28247 . . . 4 ℋ ∈ V
10 nnex 11281 . . . 4 ℕ ∈ V
119, 10elmap 8089 . . 3 (𝐻 ∈ ( ℋ ↑𝑚 ℕ) ↔ 𝐻:ℕ⟶ ℋ)
128, 11sylibr 225 . 2 (𝜑𝐻 ∈ ( ℋ ↑𝑚 ℕ))
13 nnuz 11923 . . 3 ℕ = (ℤ‘1)
14 1zzd 11655 . . 3 (𝜑 → 1 ∈ ℤ)
15 eqid 2765 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
16 eqid 2765 . . . . . 6 (norm ∘ − ) = (norm ∘ − )
1715, 16hhims 28420 . . . . 5 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
1815, 17hhxmet 28423 . . . 4 (norm ∘ − ) ∈ (∞Met‘ ℋ)
19 eqid 2765 . . . . 5 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
2019mopntopon 22523 . . . 4 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
2118, 20mp1i 13 . . 3 (𝜑 → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
22 hlimadd.5 . . . 4 (𝜑𝐹𝑣 𝐴)
2315hhnv 28413 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
24 df-hba 28217 . . . . . . 7 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
2515, 23, 24, 17, 19h2hlm 28228 . . . . . 6 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ))
26 resss 5597 . . . . . 6 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2725, 26eqsstri 3795 . . . . 5 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2827ssbri 4854 . . . 4 (𝐹𝑣 𝐴𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐴)
2922, 28syl 17 . . 3 (𝜑𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐴)
30 hlimadd.6 . . . 4 (𝜑𝐺𝑣 𝐵)
3127ssbri 4854 . . . 4 (𝐺𝑣 𝐵𝐺(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐵)
3230, 31syl 17 . . 3 (𝜑𝐺(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐵)
3315hhva 28414 . . . . 5 + = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
3417, 19, 33vacn 27940 . . . 4 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → + ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3523, 34mp1i 13 . . 3 (𝜑 → + ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3613, 14, 21, 21, 1, 3, 29, 32, 35, 7lmcn2 21732 . 2 (𝜑𝐻(⇝𝑡‘(MetOpen‘(norm ∘ − )))(𝐴 + 𝐵))
3725breqi 4815 . . 3 (𝐻𝑣 (𝐴 + 𝐵) ↔ 𝐻((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ))(𝐴 + 𝐵))
38 ovex 6874 . . . 4 (𝐴 + 𝐵) ∈ V
3938brresi 5574 . . 3 (𝐻((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ))(𝐴 + 𝐵) ↔ (𝐻 ∈ ( ℋ ↑𝑚 ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(norm ∘ − )))(𝐴 + 𝐵)))
4037, 39bitri 266 . 2 (𝐻𝑣 (𝐴 + 𝐵) ↔ (𝐻 ∈ ( ℋ ↑𝑚 ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(norm ∘ − )))(𝐴 + 𝐵)))
4112, 36, 40sylanbrc 578 1 (𝜑𝐻𝑣 (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  cop 4340   class class class wbr 4809  cmpt 4888  cres 5279  ccom 5281  wf 6064  cfv 6068  (class class class)co 6842  𝑚 cmap 8060  1c1 10190  cn 11274  ∞Metcxmet 20004  MetOpencmopn 20009  TopOnctopon 20994   Cn ccn 21308  𝑡clm 21310   ×t ctx 21643  NrmCVeccnv 27830  chba 28167   + cva 28168   · csm 28169  normcno 28171   cmv 28173  𝑣 chli 28175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269  ax-hilex 28247  ax-hfvadd 28248  ax-hvcom 28249  ax-hvass 28250  ax-hv0cl 28251  ax-hvaddid 28252  ax-hfvmul 28253  ax-hvmulid 28254  ax-hvmulass 28255  ax-hvdistr1 28256  ax-hvdistr2 28257  ax-hvmul0 28258  ax-hfi 28327  ax-his1 28330  ax-his2 28331  ax-his3 28332  ax-his4 28333
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-icc 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-hom 16240  df-cco 16241  df-rest 16351  df-topn 16352  df-0g 16370  df-gsum 16371  df-topgen 16372  df-pt 16373  df-prds 16376  df-xrs 16430  df-qtop 16435  df-imas 16436  df-xps 16438  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-mulg 17810  df-cntz 18015  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cn 21311  df-cnp 21312  df-lm 21313  df-tx 21645  df-hmeo 21838  df-xms 22404  df-tms 22406  df-grpo 27739  df-gid 27740  df-ginv 27741  df-gdiv 27742  df-ablo 27791  df-vc 27805  df-nv 27838  df-va 27841  df-ba 27842  df-sm 27843  df-0v 27844  df-vs 27845  df-nmcv 27846  df-ims 27847  df-hnorm 28216  df-hba 28217  df-hvsub 28219  df-hlim 28220
This theorem is referenced by:  chscllem4  28890
  Copyright terms: Public domain W3C validator