HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimadd Structured version   Visualization version   GIF version

Theorem hlimadd 31155
Description: Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlimadd.3 (𝜑𝐹:ℕ⟶ ℋ)
hlimadd.4 (𝜑𝐺:ℕ⟶ ℋ)
hlimadd.5 (𝜑𝐹𝑣 𝐴)
hlimadd.6 (𝜑𝐺𝑣 𝐵)
hlimadd.7 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹𝑛) + (𝐺𝑛)))
Assertion
Ref Expression
hlimadd (𝜑𝐻𝑣 (𝐴 + 𝐵))
Distinct variable groups:   𝑛,𝐹   𝑛,𝐺   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐻(𝑛)

Proof of Theorem hlimadd
StepHypRef Expression
1 hlimadd.3 . . . . . 6 (𝜑𝐹:ℕ⟶ ℋ)
21ffvelcdmda 7022 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℋ)
3 hlimadd.4 . . . . . 6 (𝜑𝐺:ℕ⟶ ℋ)
43ffvelcdmda 7022 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℋ)
5 hvaddcl 30974 . . . . 5 (((𝐹𝑛) ∈ ℋ ∧ (𝐺𝑛) ∈ ℋ) → ((𝐹𝑛) + (𝐺𝑛)) ∈ ℋ)
62, 4, 5syl2anc 584 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) + (𝐺𝑛)) ∈ ℋ)
7 hlimadd.7 . . . 4 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹𝑛) + (𝐺𝑛)))
86, 7fmptd 7052 . . 3 (𝜑𝐻:ℕ⟶ ℋ)
9 ax-hilex 30961 . . . 4 ℋ ∈ V
10 nnex 12152 . . . 4 ℕ ∈ V
119, 10elmap 8805 . . 3 (𝐻 ∈ ( ℋ ↑m ℕ) ↔ 𝐻:ℕ⟶ ℋ)
128, 11sylibr 234 . 2 (𝜑𝐻 ∈ ( ℋ ↑m ℕ))
13 nnuz 12796 . . 3 ℕ = (ℤ‘1)
14 1zzd 12524 . . 3 (𝜑 → 1 ∈ ℤ)
15 eqid 2729 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
16 eqid 2729 . . . . . 6 (norm ∘ − ) = (norm ∘ − )
1715, 16hhims 31134 . . . . 5 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
1815, 17hhxmet 31137 . . . 4 (norm ∘ − ) ∈ (∞Met‘ ℋ)
19 eqid 2729 . . . . 5 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
2019mopntopon 24343 . . . 4 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
2118, 20mp1i 13 . . 3 (𝜑 → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
22 hlimadd.5 . . . 4 (𝜑𝐹𝑣 𝐴)
2315hhnv 31127 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
24 df-hba 30931 . . . . . . 7 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
2515, 23, 24, 17, 19h2hlm 30942 . . . . . 6 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
26 resss 5956 . . . . . 6 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2725, 26eqsstri 3984 . . . . 5 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2827ssbri 5140 . . . 4 (𝐹𝑣 𝐴𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐴)
2922, 28syl 17 . . 3 (𝜑𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐴)
30 hlimadd.6 . . . 4 (𝜑𝐺𝑣 𝐵)
3127ssbri 5140 . . . 4 (𝐺𝑣 𝐵𝐺(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐵)
3230, 31syl 17 . . 3 (𝜑𝐺(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐵)
3315hhva 31128 . . . . 5 + = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
3417, 19, 33vacn 30656 . . . 4 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → + ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3523, 34mp1i 13 . . 3 (𝜑 → + ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3613, 14, 21, 21, 1, 3, 29, 32, 35, 7lmcn2 23552 . 2 (𝜑𝐻(⇝𝑡‘(MetOpen‘(norm ∘ − )))(𝐴 + 𝐵))
3725breqi 5101 . . 3 (𝐻𝑣 (𝐴 + 𝐵) ↔ 𝐻((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))(𝐴 + 𝐵))
38 ovex 7386 . . . 4 (𝐴 + 𝐵) ∈ V
3938brresi 5943 . . 3 (𝐻((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))(𝐴 + 𝐵) ↔ (𝐻 ∈ ( ℋ ↑m ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(norm ∘ − )))(𝐴 + 𝐵)))
4037, 39bitri 275 . 2 (𝐻𝑣 (𝐴 + 𝐵) ↔ (𝐻 ∈ ( ℋ ↑m ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(norm ∘ − )))(𝐴 + 𝐵)))
4112, 36, 40sylanbrc 583 1 (𝜑𝐻𝑣 (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4585   class class class wbr 5095  cmpt 5176  cres 5625  ccom 5627  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  1c1 11029  cn 12146  ∞Metcxmet 21264  MetOpencmopn 21269  TopOnctopon 22813   Cn ccn 23127  𝑡clm 23129   ×t ctx 23463  NrmCVeccnv 30546  chba 30881   + cva 30882   · csm 30883  normcno 30885   cmv 30887  𝑣 chli 30889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108  ax-hilex 30961  ax-hfvadd 30962  ax-hvcom 30963  ax-hvass 30964  ax-hv0cl 30965  ax-hvaddid 30966  ax-hfvmul 30967  ax-hvmulid 30968  ax-hvmulass 30969  ax-hvdistr1 30970  ax-hvdistr2 30971  ax-hvmul0 30972  ax-hfi 31041  ax-his1 31044  ax-his2 31045  ax-his3 31046  ax-his4 31047
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cn 23130  df-cnp 23131  df-lm 23132  df-tx 23465  df-hmeo 23658  df-xms 24224  df-tms 24226  df-grpo 30455  df-gid 30456  df-ginv 30457  df-gdiv 30458  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-vs 30561  df-nmcv 30562  df-ims 30563  df-hnorm 30930  df-hba 30931  df-hvsub 30933  df-hlim 30934
This theorem is referenced by:  chscllem4  31602
  Copyright terms: Public domain W3C validator