| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hlimadd | Structured version Visualization version GIF version | ||
| Description: Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlimadd.3 | ⊢ (𝜑 → 𝐹:ℕ⟶ ℋ) |
| hlimadd.4 | ⊢ (𝜑 → 𝐺:ℕ⟶ ℋ) |
| hlimadd.5 | ⊢ (𝜑 → 𝐹 ⇝𝑣 𝐴) |
| hlimadd.6 | ⊢ (𝜑 → 𝐺 ⇝𝑣 𝐵) |
| hlimadd.7 | ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛) +ℎ (𝐺‘𝑛))) |
| Ref | Expression |
|---|---|
| hlimadd | ⊢ (𝜑 → 𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlimadd.3 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶ ℋ) | |
| 2 | 1 | ffvelcdmda 7074 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ℋ) |
| 3 | hlimadd.4 | . . . . . 6 ⊢ (𝜑 → 𝐺:ℕ⟶ ℋ) | |
| 4 | 3 | ffvelcdmda 7074 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ ℋ) |
| 5 | hvaddcl 30993 | . . . . 5 ⊢ (((𝐹‘𝑛) ∈ ℋ ∧ (𝐺‘𝑛) ∈ ℋ) → ((𝐹‘𝑛) +ℎ (𝐺‘𝑛)) ∈ ℋ) | |
| 6 | 2, 4, 5 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) +ℎ (𝐺‘𝑛)) ∈ ℋ) |
| 7 | hlimadd.7 | . . . 4 ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛) +ℎ (𝐺‘𝑛))) | |
| 8 | 6, 7 | fmptd 7104 | . . 3 ⊢ (𝜑 → 𝐻:ℕ⟶ ℋ) |
| 9 | ax-hilex 30980 | . . . 4 ⊢ ℋ ∈ V | |
| 10 | nnex 12246 | . . . 4 ⊢ ℕ ∈ V | |
| 11 | 9, 10 | elmap 8885 | . . 3 ⊢ (𝐻 ∈ ( ℋ ↑m ℕ) ↔ 𝐻:ℕ⟶ ℋ) |
| 12 | 8, 11 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐻 ∈ ( ℋ ↑m ℕ)) |
| 13 | nnuz 12895 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 14 | 1zzd 12623 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 15 | eqid 2735 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 16 | eqid 2735 | . . . . . 6 ⊢ (normℎ ∘ −ℎ ) = (normℎ ∘ −ℎ ) | |
| 17 | 15, 16 | hhims 31153 | . . . . 5 ⊢ (normℎ ∘ −ℎ ) = (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 18 | 15, 17 | hhxmet 31156 | . . . 4 ⊢ (normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) |
| 19 | eqid 2735 | . . . . 5 ⊢ (MetOpen‘(normℎ ∘ −ℎ )) = (MetOpen‘(normℎ ∘ −ℎ )) | |
| 20 | 19 | mopntopon 24378 | . . . 4 ⊢ ((normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) → (MetOpen‘(normℎ ∘ −ℎ )) ∈ (TopOn‘ ℋ)) |
| 21 | 18, 20 | mp1i 13 | . . 3 ⊢ (𝜑 → (MetOpen‘(normℎ ∘ −ℎ )) ∈ (TopOn‘ ℋ)) |
| 22 | hlimadd.5 | . . . 4 ⊢ (𝜑 → 𝐹 ⇝𝑣 𝐴) | |
| 23 | 15 | hhnv 31146 | . . . . . . 7 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
| 24 | df-hba 30950 | . . . . . . 7 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 25 | 15, 23, 24, 17, 19 | h2hlm 30961 | . . . . . 6 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ)) |
| 26 | resss 5988 | . . . . . 6 ⊢ ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) | |
| 27 | 25, 26 | eqsstri 4005 | . . . . 5 ⊢ ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) |
| 28 | 27 | ssbri 5164 | . . . 4 ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐴) |
| 29 | 22, 28 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐴) |
| 30 | hlimadd.6 | . . . 4 ⊢ (𝜑 → 𝐺 ⇝𝑣 𝐵) | |
| 31 | 27 | ssbri 5164 | . . . 4 ⊢ (𝐺 ⇝𝑣 𝐵 → 𝐺(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐵) |
| 32 | 30, 31 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐵) |
| 33 | 15 | hhva 31147 | . . . . 5 ⊢ +ℎ = ( +𝑣 ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 34 | 17, 19, 33 | vacn 30675 | . . . 4 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec → +ℎ ∈ (((MetOpen‘(normℎ ∘ −ℎ )) ×t (MetOpen‘(normℎ ∘ −ℎ ))) Cn (MetOpen‘(normℎ ∘ −ℎ )))) |
| 35 | 23, 34 | mp1i 13 | . . 3 ⊢ (𝜑 → +ℎ ∈ (((MetOpen‘(normℎ ∘ −ℎ )) ×t (MetOpen‘(normℎ ∘ −ℎ ))) Cn (MetOpen‘(normℎ ∘ −ℎ )))) |
| 36 | 13, 14, 21, 21, 1, 3, 29, 32, 35, 7 | lmcn2 23587 | . 2 ⊢ (𝜑 → 𝐻(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))(𝐴 +ℎ 𝐵)) |
| 37 | 25 | breqi 5125 | . . 3 ⊢ (𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵) ↔ 𝐻((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ))(𝐴 +ℎ 𝐵)) |
| 38 | ovex 7438 | . . . 4 ⊢ (𝐴 +ℎ 𝐵) ∈ V | |
| 39 | 38 | brresi 5975 | . . 3 ⊢ (𝐻((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ))(𝐴 +ℎ 𝐵) ↔ (𝐻 ∈ ( ℋ ↑m ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))(𝐴 +ℎ 𝐵))) |
| 40 | 37, 39 | bitri 275 | . 2 ⊢ (𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵) ↔ (𝐻 ∈ ( ℋ ↑m ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))(𝐴 +ℎ 𝐵))) |
| 41 | 12, 36, 40 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 ↦ cmpt 5201 ↾ cres 5656 ∘ ccom 5658 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 1c1 11130 ℕcn 12240 ∞Metcxmet 21300 MetOpencmopn 21305 TopOnctopon 22848 Cn ccn 23162 ⇝𝑡clm 23164 ×t ctx 23498 NrmCVeccnv 30565 ℋchba 30900 +ℎ cva 30901 ·ℎ csm 30902 normℎcno 30904 −ℎ cmv 30906 ⇝𝑣 chli 30908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 ax-mulf 11209 ax-hilex 30980 ax-hfvadd 30981 ax-hvcom 30982 ax-hvass 30983 ax-hv0cl 30984 ax-hvaddid 30985 ax-hfvmul 30986 ax-hvmulid 30987 ax-hvmulass 30988 ax-hvdistr1 30989 ax-hvdistr2 30990 ax-hvmul0 30991 ax-hfi 31060 ax-his1 31063 ax-his2 31064 ax-his3 31065 ax-his4 31066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-icc 13369 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cn 23165 df-cnp 23166 df-lm 23167 df-tx 23500 df-hmeo 23693 df-xms 24259 df-tms 24261 df-grpo 30474 df-gid 30475 df-ginv 30476 df-gdiv 30477 df-ablo 30526 df-vc 30540 df-nv 30573 df-va 30576 df-ba 30577 df-sm 30578 df-0v 30579 df-vs 30580 df-nmcv 30581 df-ims 30582 df-hnorm 30949 df-hba 30950 df-hvsub 30952 df-hlim 30953 |
| This theorem is referenced by: chscllem4 31621 |
| Copyright terms: Public domain | W3C validator |