![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hlimadd | Structured version Visualization version GIF version |
Description: Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlimadd.3 | ⊢ (𝜑 → 𝐹:ℕ⟶ ℋ) |
hlimadd.4 | ⊢ (𝜑 → 𝐺:ℕ⟶ ℋ) |
hlimadd.5 | ⊢ (𝜑 → 𝐹 ⇝𝑣 𝐴) |
hlimadd.6 | ⊢ (𝜑 → 𝐺 ⇝𝑣 𝐵) |
hlimadd.7 | ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛) +ℎ (𝐺‘𝑛))) |
Ref | Expression |
---|---|
hlimadd | ⊢ (𝜑 → 𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlimadd.3 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶ ℋ) | |
2 | 1 | ffvelcdmda 7103 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ℋ) |
3 | hlimadd.4 | . . . . . 6 ⊢ (𝜑 → 𝐺:ℕ⟶ ℋ) | |
4 | 3 | ffvelcdmda 7103 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ ℋ) |
5 | hvaddcl 31040 | . . . . 5 ⊢ (((𝐹‘𝑛) ∈ ℋ ∧ (𝐺‘𝑛) ∈ ℋ) → ((𝐹‘𝑛) +ℎ (𝐺‘𝑛)) ∈ ℋ) | |
6 | 2, 4, 5 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) +ℎ (𝐺‘𝑛)) ∈ ℋ) |
7 | hlimadd.7 | . . . 4 ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛) +ℎ (𝐺‘𝑛))) | |
8 | 6, 7 | fmptd 7133 | . . 3 ⊢ (𝜑 → 𝐻:ℕ⟶ ℋ) |
9 | ax-hilex 31027 | . . . 4 ⊢ ℋ ∈ V | |
10 | nnex 12269 | . . . 4 ⊢ ℕ ∈ V | |
11 | 9, 10 | elmap 8909 | . . 3 ⊢ (𝐻 ∈ ( ℋ ↑m ℕ) ↔ 𝐻:ℕ⟶ ℋ) |
12 | 8, 11 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐻 ∈ ( ℋ ↑m ℕ)) |
13 | nnuz 12918 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
14 | 1zzd 12645 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
15 | eqid 2734 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
16 | eqid 2734 | . . . . . 6 ⊢ (normℎ ∘ −ℎ ) = (normℎ ∘ −ℎ ) | |
17 | 15, 16 | hhims 31200 | . . . . 5 ⊢ (normℎ ∘ −ℎ ) = (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
18 | 15, 17 | hhxmet 31203 | . . . 4 ⊢ (normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) |
19 | eqid 2734 | . . . . 5 ⊢ (MetOpen‘(normℎ ∘ −ℎ )) = (MetOpen‘(normℎ ∘ −ℎ )) | |
20 | 19 | mopntopon 24464 | . . . 4 ⊢ ((normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) → (MetOpen‘(normℎ ∘ −ℎ )) ∈ (TopOn‘ ℋ)) |
21 | 18, 20 | mp1i 13 | . . 3 ⊢ (𝜑 → (MetOpen‘(normℎ ∘ −ℎ )) ∈ (TopOn‘ ℋ)) |
22 | hlimadd.5 | . . . 4 ⊢ (𝜑 → 𝐹 ⇝𝑣 𝐴) | |
23 | 15 | hhnv 31193 | . . . . . . 7 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
24 | df-hba 30997 | . . . . . . 7 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
25 | 15, 23, 24, 17, 19 | h2hlm 31008 | . . . . . 6 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ)) |
26 | resss 6021 | . . . . . 6 ⊢ ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) | |
27 | 25, 26 | eqsstri 4029 | . . . . 5 ⊢ ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) |
28 | 27 | ssbri 5192 | . . . 4 ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐴) |
29 | 22, 28 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐴) |
30 | hlimadd.6 | . . . 4 ⊢ (𝜑 → 𝐺 ⇝𝑣 𝐵) | |
31 | 27 | ssbri 5192 | . . . 4 ⊢ (𝐺 ⇝𝑣 𝐵 → 𝐺(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐵) |
32 | 30, 31 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐵) |
33 | 15 | hhva 31194 | . . . . 5 ⊢ +ℎ = ( +𝑣 ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
34 | 17, 19, 33 | vacn 30722 | . . . 4 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec → +ℎ ∈ (((MetOpen‘(normℎ ∘ −ℎ )) ×t (MetOpen‘(normℎ ∘ −ℎ ))) Cn (MetOpen‘(normℎ ∘ −ℎ )))) |
35 | 23, 34 | mp1i 13 | . . 3 ⊢ (𝜑 → +ℎ ∈ (((MetOpen‘(normℎ ∘ −ℎ )) ×t (MetOpen‘(normℎ ∘ −ℎ ))) Cn (MetOpen‘(normℎ ∘ −ℎ )))) |
36 | 13, 14, 21, 21, 1, 3, 29, 32, 35, 7 | lmcn2 23672 | . 2 ⊢ (𝜑 → 𝐻(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))(𝐴 +ℎ 𝐵)) |
37 | 25 | breqi 5153 | . . 3 ⊢ (𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵) ↔ 𝐻((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ))(𝐴 +ℎ 𝐵)) |
38 | ovex 7463 | . . . 4 ⊢ (𝐴 +ℎ 𝐵) ∈ V | |
39 | 38 | brresi 6008 | . . 3 ⊢ (𝐻((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ))(𝐴 +ℎ 𝐵) ↔ (𝐻 ∈ ( ℋ ↑m ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))(𝐴 +ℎ 𝐵))) |
40 | 37, 39 | bitri 275 | . 2 ⊢ (𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵) ↔ (𝐻 ∈ ( ℋ ↑m ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))(𝐴 +ℎ 𝐵))) |
41 | 12, 36, 40 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 〈cop 4636 class class class wbr 5147 ↦ cmpt 5230 ↾ cres 5690 ∘ ccom 5692 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ↑m cmap 8864 1c1 11153 ℕcn 12263 ∞Metcxmet 21366 MetOpencmopn 21371 TopOnctopon 22931 Cn ccn 23247 ⇝𝑡clm 23249 ×t ctx 23583 NrmCVeccnv 30612 ℋchba 30947 +ℎ cva 30948 ·ℎ csm 30949 normℎcno 30951 −ℎ cmv 30953 ⇝𝑣 chli 30955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 ax-mulf 11232 ax-hilex 31027 ax-hfvadd 31028 ax-hvcom 31029 ax-hvass 31030 ax-hv0cl 31031 ax-hvaddid 31032 ax-hfvmul 31033 ax-hvmulid 31034 ax-hvmulass 31035 ax-hvdistr1 31036 ax-hvdistr2 31037 ax-hvmul0 31038 ax-hfi 31107 ax-his1 31110 ax-his2 31111 ax-his3 31112 ax-his4 31113 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-pm 8867 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-fi 9448 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-icc 13390 df-fz 13544 df-fzo 13691 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-mulg 19098 df-cntz 19347 df-cmn 19814 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-cn 23250 df-cnp 23251 df-lm 23252 df-tx 23585 df-hmeo 23778 df-xms 24345 df-tms 24347 df-grpo 30521 df-gid 30522 df-ginv 30523 df-gdiv 30524 df-ablo 30573 df-vc 30587 df-nv 30620 df-va 30623 df-ba 30624 df-sm 30625 df-0v 30626 df-vs 30627 df-nmcv 30628 df-ims 30629 df-hnorm 30996 df-hba 30997 df-hvsub 30999 df-hlim 31000 |
This theorem is referenced by: chscllem4 31668 |
Copyright terms: Public domain | W3C validator |