HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimadd Structured version   Visualization version   GIF version

Theorem hlimadd 28661
Description: Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlimadd.3 (𝜑𝐹:ℕ⟶ ℋ)
hlimadd.4 (𝜑𝐺:ℕ⟶ ℋ)
hlimadd.5 (𝜑𝐹𝑣 𝐴)
hlimadd.6 (𝜑𝐺𝑣 𝐵)
hlimadd.7 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹𝑛) + (𝐺𝑛)))
Assertion
Ref Expression
hlimadd (𝜑𝐻𝑣 (𝐴 + 𝐵))
Distinct variable groups:   𝑛,𝐹   𝑛,𝐺   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐻(𝑛)

Proof of Theorem hlimadd
StepHypRef Expression
1 hlimadd.3 . . . . . 6 (𝜑𝐹:ℕ⟶ ℋ)
21ffvelrnda 6716 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℋ)
3 hlimadd.4 . . . . . 6 (𝜑𝐺:ℕ⟶ ℋ)
43ffvelrnda 6716 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℋ)
5 hvaddcl 28480 . . . . 5 (((𝐹𝑛) ∈ ℋ ∧ (𝐺𝑛) ∈ ℋ) → ((𝐹𝑛) + (𝐺𝑛)) ∈ ℋ)
62, 4, 5syl2anc 584 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) + (𝐺𝑛)) ∈ ℋ)
7 hlimadd.7 . . . 4 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹𝑛) + (𝐺𝑛)))
86, 7fmptd 6741 . . 3 (𝜑𝐻:ℕ⟶ ℋ)
9 ax-hilex 28467 . . . 4 ℋ ∈ V
10 nnex 11492 . . . 4 ℕ ∈ V
119, 10elmap 8285 . . 3 (𝐻 ∈ ( ℋ ↑𝑚 ℕ) ↔ 𝐻:ℕ⟶ ℋ)
128, 11sylibr 235 . 2 (𝜑𝐻 ∈ ( ℋ ↑𝑚 ℕ))
13 nnuz 12130 . . 3 ℕ = (ℤ‘1)
14 1zzd 11862 . . 3 (𝜑 → 1 ∈ ℤ)
15 eqid 2795 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
16 eqid 2795 . . . . . 6 (norm ∘ − ) = (norm ∘ − )
1715, 16hhims 28640 . . . . 5 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
1815, 17hhxmet 28643 . . . 4 (norm ∘ − ) ∈ (∞Met‘ ℋ)
19 eqid 2795 . . . . 5 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
2019mopntopon 22732 . . . 4 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
2118, 20mp1i 13 . . 3 (𝜑 → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
22 hlimadd.5 . . . 4 (𝜑𝐹𝑣 𝐴)
2315hhnv 28633 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
24 df-hba 28437 . . . . . . 7 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
2515, 23, 24, 17, 19h2hlm 28448 . . . . . 6 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ))
26 resss 5759 . . . . . 6 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2725, 26eqsstri 3922 . . . . 5 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2827ssbri 5007 . . . 4 (𝐹𝑣 𝐴𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐴)
2922, 28syl 17 . . 3 (𝜑𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐴)
30 hlimadd.6 . . . 4 (𝜑𝐺𝑣 𝐵)
3127ssbri 5007 . . . 4 (𝐺𝑣 𝐵𝐺(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐵)
3230, 31syl 17 . . 3 (𝜑𝐺(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐵)
3315hhva 28634 . . . . 5 + = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
3417, 19, 33vacn 28162 . . . 4 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → + ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3523, 34mp1i 13 . . 3 (𝜑 → + ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3613, 14, 21, 21, 1, 3, 29, 32, 35, 7lmcn2 21941 . 2 (𝜑𝐻(⇝𝑡‘(MetOpen‘(norm ∘ − )))(𝐴 + 𝐵))
3725breqi 4968 . . 3 (𝐻𝑣 (𝐴 + 𝐵) ↔ 𝐻((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ))(𝐴 + 𝐵))
38 ovex 7048 . . . 4 (𝐴 + 𝐵) ∈ V
3938brresi 5743 . . 3 (𝐻((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ))(𝐴 + 𝐵) ↔ (𝐻 ∈ ( ℋ ↑𝑚 ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(norm ∘ − )))(𝐴 + 𝐵)))
4037, 39bitri 276 . 2 (𝐻𝑣 (𝐴 + 𝐵) ↔ (𝐻 ∈ ( ℋ ↑𝑚 ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(norm ∘ − )))(𝐴 + 𝐵)))
4112, 36, 40sylanbrc 583 1 (𝜑𝐻𝑣 (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  cop 4478   class class class wbr 4962  cmpt 5041  cres 5445  ccom 5447  wf 6221  cfv 6225  (class class class)co 7016  𝑚 cmap 8256  1c1 10384  cn 11486  ∞Metcxmet 20212  MetOpencmopn 20217  TopOnctopon 21202   Cn ccn 21516  𝑡clm 21518   ×t ctx 21852  NrmCVeccnv 28052  chba 28387   + cva 28388   · csm 28389  normcno 28391   cmv 28393  𝑣 chli 28395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463  ax-hilex 28467  ax-hfvadd 28468  ax-hvcom 28469  ax-hvass 28470  ax-hv0cl 28471  ax-hvaddid 28472  ax-hfvmul 28473  ax-hvmulid 28474  ax-hvmulass 28475  ax-hvdistr1 28476  ax-hvdistr2 28477  ax-hvmul0 28478  ax-hfi 28547  ax-his1 28550  ax-his2 28551  ax-his3 28552  ax-his4 28553
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-icc 12595  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cn 21519  df-cnp 21520  df-lm 21521  df-tx 21854  df-hmeo 22047  df-xms 22613  df-tms 22615  df-grpo 27961  df-gid 27962  df-ginv 27963  df-gdiv 27964  df-ablo 28013  df-vc 28027  df-nv 28060  df-va 28063  df-ba 28064  df-sm 28065  df-0v 28066  df-vs 28067  df-nmcv 28068  df-ims 28069  df-hnorm 28436  df-hba 28437  df-hvsub 28439  df-hlim 28440
This theorem is referenced by:  chscllem4  29108
  Copyright terms: Public domain W3C validator