| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hlimadd | Structured version Visualization version GIF version | ||
| Description: Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlimadd.3 | ⊢ (𝜑 → 𝐹:ℕ⟶ ℋ) |
| hlimadd.4 | ⊢ (𝜑 → 𝐺:ℕ⟶ ℋ) |
| hlimadd.5 | ⊢ (𝜑 → 𝐹 ⇝𝑣 𝐴) |
| hlimadd.6 | ⊢ (𝜑 → 𝐺 ⇝𝑣 𝐵) |
| hlimadd.7 | ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛) +ℎ (𝐺‘𝑛))) |
| Ref | Expression |
|---|---|
| hlimadd | ⊢ (𝜑 → 𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlimadd.3 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶ ℋ) | |
| 2 | 1 | ffvelcdmda 7025 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ℋ) |
| 3 | hlimadd.4 | . . . . . 6 ⊢ (𝜑 → 𝐺:ℕ⟶ ℋ) | |
| 4 | 3 | ffvelcdmda 7025 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ ℋ) |
| 5 | hvaddcl 30996 | . . . . 5 ⊢ (((𝐹‘𝑛) ∈ ℋ ∧ (𝐺‘𝑛) ∈ ℋ) → ((𝐹‘𝑛) +ℎ (𝐺‘𝑛)) ∈ ℋ) | |
| 6 | 2, 4, 5 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) +ℎ (𝐺‘𝑛)) ∈ ℋ) |
| 7 | hlimadd.7 | . . . 4 ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛) +ℎ (𝐺‘𝑛))) | |
| 8 | 6, 7 | fmptd 7055 | . . 3 ⊢ (𝜑 → 𝐻:ℕ⟶ ℋ) |
| 9 | ax-hilex 30983 | . . . 4 ⊢ ℋ ∈ V | |
| 10 | nnex 12140 | . . . 4 ⊢ ℕ ∈ V | |
| 11 | 9, 10 | elmap 8803 | . . 3 ⊢ (𝐻 ∈ ( ℋ ↑m ℕ) ↔ 𝐻:ℕ⟶ ℋ) |
| 12 | 8, 11 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐻 ∈ ( ℋ ↑m ℕ)) |
| 13 | nnuz 12779 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 14 | 1zzd 12511 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 15 | eqid 2733 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 16 | eqid 2733 | . . . . . 6 ⊢ (normℎ ∘ −ℎ ) = (normℎ ∘ −ℎ ) | |
| 17 | 15, 16 | hhims 31156 | . . . . 5 ⊢ (normℎ ∘ −ℎ ) = (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 18 | 15, 17 | hhxmet 31159 | . . . 4 ⊢ (normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) |
| 19 | eqid 2733 | . . . . 5 ⊢ (MetOpen‘(normℎ ∘ −ℎ )) = (MetOpen‘(normℎ ∘ −ℎ )) | |
| 20 | 19 | mopntopon 24357 | . . . 4 ⊢ ((normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) → (MetOpen‘(normℎ ∘ −ℎ )) ∈ (TopOn‘ ℋ)) |
| 21 | 18, 20 | mp1i 13 | . . 3 ⊢ (𝜑 → (MetOpen‘(normℎ ∘ −ℎ )) ∈ (TopOn‘ ℋ)) |
| 22 | hlimadd.5 | . . . 4 ⊢ (𝜑 → 𝐹 ⇝𝑣 𝐴) | |
| 23 | 15 | hhnv 31149 | . . . . . . 7 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
| 24 | df-hba 30953 | . . . . . . 7 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 25 | 15, 23, 24, 17, 19 | h2hlm 30964 | . . . . . 6 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ)) |
| 26 | resss 5956 | . . . . . 6 ⊢ ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) | |
| 27 | 25, 26 | eqsstri 3977 | . . . . 5 ⊢ ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) |
| 28 | 27 | ssbri 5140 | . . . 4 ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐴) |
| 29 | 22, 28 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐴) |
| 30 | hlimadd.6 | . . . 4 ⊢ (𝜑 → 𝐺 ⇝𝑣 𝐵) | |
| 31 | 27 | ssbri 5140 | . . . 4 ⊢ (𝐺 ⇝𝑣 𝐵 → 𝐺(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐵) |
| 32 | 30, 31 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐵) |
| 33 | 15 | hhva 31150 | . . . . 5 ⊢ +ℎ = ( +𝑣 ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 34 | 17, 19, 33 | vacn 30678 | . . . 4 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec → +ℎ ∈ (((MetOpen‘(normℎ ∘ −ℎ )) ×t (MetOpen‘(normℎ ∘ −ℎ ))) Cn (MetOpen‘(normℎ ∘ −ℎ )))) |
| 35 | 23, 34 | mp1i 13 | . . 3 ⊢ (𝜑 → +ℎ ∈ (((MetOpen‘(normℎ ∘ −ℎ )) ×t (MetOpen‘(normℎ ∘ −ℎ ))) Cn (MetOpen‘(normℎ ∘ −ℎ )))) |
| 36 | 13, 14, 21, 21, 1, 3, 29, 32, 35, 7 | lmcn2 23567 | . 2 ⊢ (𝜑 → 𝐻(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))(𝐴 +ℎ 𝐵)) |
| 37 | 25 | breqi 5101 | . . 3 ⊢ (𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵) ↔ 𝐻((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ))(𝐴 +ℎ 𝐵)) |
| 38 | ovex 7387 | . . . 4 ⊢ (𝐴 +ℎ 𝐵) ∈ V | |
| 39 | 38 | brresi 5943 | . . 3 ⊢ (𝐻((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ))(𝐴 +ℎ 𝐵) ↔ (𝐻 ∈ ( ℋ ↑m ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))(𝐴 +ℎ 𝐵))) |
| 40 | 37, 39 | bitri 275 | . 2 ⊢ (𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵) ↔ (𝐻 ∈ ( ℋ ↑m ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))(𝐴 +ℎ 𝐵))) |
| 41 | 12, 36, 40 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 〈cop 4583 class class class wbr 5095 ↦ cmpt 5176 ↾ cres 5623 ∘ ccom 5625 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ↑m cmap 8758 1c1 11016 ℕcn 12134 ∞Metcxmet 21280 MetOpencmopn 21285 TopOnctopon 22828 Cn ccn 23142 ⇝𝑡clm 23144 ×t ctx 23478 NrmCVeccnv 30568 ℋchba 30903 +ℎ cva 30904 ·ℎ csm 30905 normℎcno 30907 −ℎ cmv 30909 ⇝𝑣 chli 30911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 ax-addf 11094 ax-mulf 11095 ax-hilex 30983 ax-hfvadd 30984 ax-hvcom 30985 ax-hvass 30986 ax-hv0cl 30987 ax-hvaddid 30988 ax-hfvmul 30989 ax-hvmulid 30990 ax-hvmulass 30991 ax-hvdistr1 30992 ax-hvdistr2 30993 ax-hvmul0 30994 ax-hfi 31063 ax-his1 31066 ax-his2 31067 ax-his3 31068 ax-his4 31069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-pm 8761 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-fi 9304 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-q 12851 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-icc 13256 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-hom 17189 df-cco 17190 df-rest 17330 df-topn 17331 df-0g 17349 df-gsum 17350 df-topgen 17351 df-pt 17352 df-prds 17355 df-xrs 17410 df-qtop 17415 df-imas 17416 df-xps 17418 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-submnd 18696 df-mulg 18985 df-cntz 19233 df-cmn 19698 df-psmet 21287 df-xmet 21288 df-met 21289 df-bl 21290 df-mopn 21291 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22864 df-cn 23145 df-cnp 23146 df-lm 23147 df-tx 23480 df-hmeo 23673 df-xms 24238 df-tms 24240 df-grpo 30477 df-gid 30478 df-ginv 30479 df-gdiv 30480 df-ablo 30529 df-vc 30543 df-nv 30576 df-va 30579 df-ba 30580 df-sm 30581 df-0v 30582 df-vs 30583 df-nmcv 30584 df-ims 30585 df-hnorm 30952 df-hba 30953 df-hvsub 30955 df-hlim 30956 |
| This theorem is referenced by: chscllem4 31624 |
| Copyright terms: Public domain | W3C validator |