HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimadd Structured version   Visualization version   GIF version

Theorem hlimadd 31171
Description: Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlimadd.3 (𝜑𝐹:ℕ⟶ ℋ)
hlimadd.4 (𝜑𝐺:ℕ⟶ ℋ)
hlimadd.5 (𝜑𝐹𝑣 𝐴)
hlimadd.6 (𝜑𝐺𝑣 𝐵)
hlimadd.7 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹𝑛) + (𝐺𝑛)))
Assertion
Ref Expression
hlimadd (𝜑𝐻𝑣 (𝐴 + 𝐵))
Distinct variable groups:   𝑛,𝐹   𝑛,𝐺   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐻(𝑛)

Proof of Theorem hlimadd
StepHypRef Expression
1 hlimadd.3 . . . . . 6 (𝜑𝐹:ℕ⟶ ℋ)
21ffvelcdmda 7017 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℋ)
3 hlimadd.4 . . . . . 6 (𝜑𝐺:ℕ⟶ ℋ)
43ffvelcdmda 7017 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℋ)
5 hvaddcl 30990 . . . . 5 (((𝐹𝑛) ∈ ℋ ∧ (𝐺𝑛) ∈ ℋ) → ((𝐹𝑛) + (𝐺𝑛)) ∈ ℋ)
62, 4, 5syl2anc 584 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) + (𝐺𝑛)) ∈ ℋ)
7 hlimadd.7 . . . 4 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹𝑛) + (𝐺𝑛)))
86, 7fmptd 7047 . . 3 (𝜑𝐻:ℕ⟶ ℋ)
9 ax-hilex 30977 . . . 4 ℋ ∈ V
10 nnex 12131 . . . 4 ℕ ∈ V
119, 10elmap 8795 . . 3 (𝐻 ∈ ( ℋ ↑m ℕ) ↔ 𝐻:ℕ⟶ ℋ)
128, 11sylibr 234 . 2 (𝜑𝐻 ∈ ( ℋ ↑m ℕ))
13 nnuz 12775 . . 3 ℕ = (ℤ‘1)
14 1zzd 12503 . . 3 (𝜑 → 1 ∈ ℤ)
15 eqid 2731 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
16 eqid 2731 . . . . . 6 (norm ∘ − ) = (norm ∘ − )
1715, 16hhims 31150 . . . . 5 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
1815, 17hhxmet 31153 . . . 4 (norm ∘ − ) ∈ (∞Met‘ ℋ)
19 eqid 2731 . . . . 5 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
2019mopntopon 24355 . . . 4 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
2118, 20mp1i 13 . . 3 (𝜑 → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
22 hlimadd.5 . . . 4 (𝜑𝐹𝑣 𝐴)
2315hhnv 31143 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
24 df-hba 30947 . . . . . . 7 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
2515, 23, 24, 17, 19h2hlm 30958 . . . . . 6 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
26 resss 5950 . . . . . 6 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2725, 26eqsstri 3981 . . . . 5 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2827ssbri 5136 . . . 4 (𝐹𝑣 𝐴𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐴)
2922, 28syl 17 . . 3 (𝜑𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐴)
30 hlimadd.6 . . . 4 (𝜑𝐺𝑣 𝐵)
3127ssbri 5136 . . . 4 (𝐺𝑣 𝐵𝐺(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐵)
3230, 31syl 17 . . 3 (𝜑𝐺(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐵)
3315hhva 31144 . . . . 5 + = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
3417, 19, 33vacn 30672 . . . 4 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → + ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3523, 34mp1i 13 . . 3 (𝜑 → + ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3613, 14, 21, 21, 1, 3, 29, 32, 35, 7lmcn2 23565 . 2 (𝜑𝐻(⇝𝑡‘(MetOpen‘(norm ∘ − )))(𝐴 + 𝐵))
3725breqi 5097 . . 3 (𝐻𝑣 (𝐴 + 𝐵) ↔ 𝐻((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))(𝐴 + 𝐵))
38 ovex 7379 . . . 4 (𝐴 + 𝐵) ∈ V
3938brresi 5937 . . 3 (𝐻((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))(𝐴 + 𝐵) ↔ (𝐻 ∈ ( ℋ ↑m ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(norm ∘ − )))(𝐴 + 𝐵)))
4037, 39bitri 275 . 2 (𝐻𝑣 (𝐴 + 𝐵) ↔ (𝐻 ∈ ( ℋ ↑m ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(norm ∘ − )))(𝐴 + 𝐵)))
4112, 36, 40sylanbrc 583 1 (𝜑𝐻𝑣 (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4582   class class class wbr 5091  cmpt 5172  cres 5618  ccom 5620  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  1c1 11007  cn 12125  ∞Metcxmet 21277  MetOpencmopn 21282  TopOnctopon 22826   Cn ccn 23140  𝑡clm 23142   ×t ctx 23476  NrmCVeccnv 30562  chba 30897   + cva 30898   · csm 30899  normcno 30901   cmv 30903  𝑣 chli 30905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086  ax-hilex 30977  ax-hfvadd 30978  ax-hvcom 30979  ax-hvass 30980  ax-hv0cl 30981  ax-hvaddid 30982  ax-hfvmul 30983  ax-hvmulid 30984  ax-hvmulass 30985  ax-hvdistr1 30986  ax-hvdistr2 30987  ax-hvmul0 30988  ax-hfi 31057  ax-his1 31060  ax-his2 31061  ax-his3 31062  ax-his4 31063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cn 23143  df-cnp 23144  df-lm 23145  df-tx 23478  df-hmeo 23671  df-xms 24236  df-tms 24238  df-grpo 30471  df-gid 30472  df-ginv 30473  df-gdiv 30474  df-ablo 30523  df-vc 30537  df-nv 30570  df-va 30573  df-ba 30574  df-sm 30575  df-0v 30576  df-vs 30577  df-nmcv 30578  df-ims 30579  df-hnorm 30946  df-hba 30947  df-hvsub 30949  df-hlim 30950
This theorem is referenced by:  chscllem4  31618
  Copyright terms: Public domain W3C validator