Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimadd Structured version   Visualization version   GIF version

 Description: Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlimadd.7 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹𝑛) + (𝐺𝑛)))
Assertion
Ref Expression
Distinct variable groups:   𝑛,𝐹   𝑛,𝐺   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐻(𝑛)

StepHypRef Expression
1 hlimadd.3 . . . . . 6 (𝜑𝐹:ℕ⟶ ℋ)
21ffvelrnda 6828 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℋ)
3 hlimadd.4 . . . . . 6 (𝜑𝐺:ℕ⟶ ℋ)
43ffvelrnda 6828 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℋ)
5 hvaddcl 28802 . . . . 5 (((𝐹𝑛) ∈ ℋ ∧ (𝐺𝑛) ∈ ℋ) → ((𝐹𝑛) + (𝐺𝑛)) ∈ ℋ)
62, 4, 5syl2anc 587 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) + (𝐺𝑛)) ∈ ℋ)
7 hlimadd.7 . . . 4 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹𝑛) + (𝐺𝑛)))
86, 7fmptd 6855 . . 3 (𝜑𝐻:ℕ⟶ ℋ)
9 ax-hilex 28789 . . . 4 ℋ ∈ V
10 nnex 11633 . . . 4 ℕ ∈ V
119, 10elmap 8420 . . 3 (𝐻 ∈ ( ℋ ↑m ℕ) ↔ 𝐻:ℕ⟶ ℋ)
128, 11sylibr 237 . 2 (𝜑𝐻 ∈ ( ℋ ↑m ℕ))
13 nnuz 12271 . . 3 ℕ = (ℤ‘1)
14 1zzd 12003 . . 3 (𝜑 → 1 ∈ ℤ)
15 eqid 2798 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
16 eqid 2798 . . . . . 6 (norm ∘ − ) = (norm ∘ − )
1715, 16hhims 28962 . . . . 5 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
1815, 17hhxmet 28965 . . . 4 (norm ∘ − ) ∈ (∞Met‘ ℋ)
19 eqid 2798 . . . . 5 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
2019mopntopon 23053 . . . 4 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
2118, 20mp1i 13 . . 3 (𝜑 → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
22 hlimadd.5 . . . 4 (𝜑𝐹𝑣 𝐴)
2315hhnv 28955 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
24 df-hba 28759 . . . . . . 7 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
2515, 23, 24, 17, 19h2hlm 28770 . . . . . 6 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
26 resss 5843 . . . . . 6 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2725, 26eqsstri 3949 . . . . 5 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2827ssbri 5075 . . . 4 (𝐹𝑣 𝐴𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐴)
2922, 28syl 17 . . 3 (𝜑𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐴)
30 hlimadd.6 . . . 4 (𝜑𝐺𝑣 𝐵)
3127ssbri 5075 . . . 4 (𝐺𝑣 𝐵𝐺(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐵)
3230, 31syl 17 . . 3 (𝜑𝐺(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝐵)
3315hhva 28956 . . . . 5 + = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
3417, 19, 33vacn 28484 . . . 4 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → + ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3523, 34mp1i 13 . . 3 (𝜑 → + ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3613, 14, 21, 21, 1, 3, 29, 32, 35, 7lmcn2 22261 . 2 (𝜑𝐻(⇝𝑡‘(MetOpen‘(norm ∘ − )))(𝐴 + 𝐵))
3725breqi 5036 . . 3 (𝐻𝑣 (𝐴 + 𝐵) ↔ 𝐻((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))(𝐴 + 𝐵))
38 ovex 7168 . . . 4 (𝐴 + 𝐵) ∈ V
3938brresi 5827 . . 3 (𝐻((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))(𝐴 + 𝐵) ↔ (𝐻 ∈ ( ℋ ↑m ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(norm ∘ − )))(𝐴 + 𝐵)))
4037, 39bitri 278 . 2 (𝐻𝑣 (𝐴 + 𝐵) ↔ (𝐻 ∈ ( ℋ ↑m ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(norm ∘ − )))(𝐴 + 𝐵)))
4112, 36, 40sylanbrc 586 1 (𝜑𝐻𝑣 (𝐴 + 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ⟨cop 4531   class class class wbr 5030   ↦ cmpt 5110   ↾ cres 5521   ∘ ccom 5523  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135   ↑m cmap 8391  1c1 10529  ℕcn 11627  ∞Metcxmet 20079  MetOpencmopn 20084  TopOnctopon 21522   Cn ccn 21836  ⇝𝑡clm 21838   ×t ctx 22172  NrmCVeccnv 28374   ℋchba 28709   +ℎ cva 28710   ·ℎ csm 28711  normℎcno 28713   −ℎ cmv 28715   ⇝𝑣 chli 28717 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606  ax-addf 10607  ax-mulf 10608  ax-hilex 28789  ax-hfvadd 28790  ax-hvcom 28791  ax-hvass 28792  ax-hv0cl 28793  ax-hvaddid 28794  ax-hfvmul 28795  ax-hvmulid 28796  ax-hvmulass 28797  ax-hvdistr1 28798  ax-hvdistr2 28799  ax-hvmul0 28800  ax-hfi 28869  ax-his1 28872  ax-his2 28873  ax-his3 28874  ax-his4 28875 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7390  df-om 7563  df-1st 7673  df-2nd 7674  df-supp 7816  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-map 8393  df-pm 8394  df-ixp 8447  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-fsupp 8820  df-fi 8861  df-sup 8892  df-inf 8893  df-oi 8960  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-5 11693  df-6 11694  df-7 11695  df-8 11696  df-9 11697  df-n0 11888  df-z 11972  df-dec 12089  df-uz 12234  df-q 12339  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-icc 12735  df-fz 12888  df-fzo 13031  df-seq 13367  df-exp 13428  df-hash 13689  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18220  df-cntz 18442  df-cmn 18903  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-top 21506  df-topon 21523  df-topsp 21545  df-bases 21558  df-cn 21839  df-cnp 21840  df-lm 21841  df-tx 22174  df-hmeo 22367  df-xms 22934  df-tms 22936  df-grpo 28283  df-gid 28284  df-ginv 28285  df-gdiv 28286  df-ablo 28335  df-vc 28349  df-nv 28382  df-va 28385  df-ba 28386  df-sm 28387  df-0v 28388  df-vs 28389  df-nmcv 28390  df-ims 28391  df-hnorm 28758  df-hba 28759  df-hvsub 28761  df-hlim 28762 This theorem is referenced by:  chscllem4  29430
 Copyright terms: Public domain W3C validator