| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hlimadd | Structured version Visualization version GIF version | ||
| Description: Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlimadd.3 | ⊢ (𝜑 → 𝐹:ℕ⟶ ℋ) |
| hlimadd.4 | ⊢ (𝜑 → 𝐺:ℕ⟶ ℋ) |
| hlimadd.5 | ⊢ (𝜑 → 𝐹 ⇝𝑣 𝐴) |
| hlimadd.6 | ⊢ (𝜑 → 𝐺 ⇝𝑣 𝐵) |
| hlimadd.7 | ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛) +ℎ (𝐺‘𝑛))) |
| Ref | Expression |
|---|---|
| hlimadd | ⊢ (𝜑 → 𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlimadd.3 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶ ℋ) | |
| 2 | 1 | ffvelcdmda 7104 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ℋ) |
| 3 | hlimadd.4 | . . . . . 6 ⊢ (𝜑 → 𝐺:ℕ⟶ ℋ) | |
| 4 | 3 | ffvelcdmda 7104 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ ℋ) |
| 5 | hvaddcl 31031 | . . . . 5 ⊢ (((𝐹‘𝑛) ∈ ℋ ∧ (𝐺‘𝑛) ∈ ℋ) → ((𝐹‘𝑛) +ℎ (𝐺‘𝑛)) ∈ ℋ) | |
| 6 | 2, 4, 5 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) +ℎ (𝐺‘𝑛)) ∈ ℋ) |
| 7 | hlimadd.7 | . . . 4 ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛) +ℎ (𝐺‘𝑛))) | |
| 8 | 6, 7 | fmptd 7134 | . . 3 ⊢ (𝜑 → 𝐻:ℕ⟶ ℋ) |
| 9 | ax-hilex 31018 | . . . 4 ⊢ ℋ ∈ V | |
| 10 | nnex 12272 | . . . 4 ⊢ ℕ ∈ V | |
| 11 | 9, 10 | elmap 8911 | . . 3 ⊢ (𝐻 ∈ ( ℋ ↑m ℕ) ↔ 𝐻:ℕ⟶ ℋ) |
| 12 | 8, 11 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐻 ∈ ( ℋ ↑m ℕ)) |
| 13 | nnuz 12921 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 14 | 1zzd 12648 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 15 | eqid 2737 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 16 | eqid 2737 | . . . . . 6 ⊢ (normℎ ∘ −ℎ ) = (normℎ ∘ −ℎ ) | |
| 17 | 15, 16 | hhims 31191 | . . . . 5 ⊢ (normℎ ∘ −ℎ ) = (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 18 | 15, 17 | hhxmet 31194 | . . . 4 ⊢ (normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) |
| 19 | eqid 2737 | . . . . 5 ⊢ (MetOpen‘(normℎ ∘ −ℎ )) = (MetOpen‘(normℎ ∘ −ℎ )) | |
| 20 | 19 | mopntopon 24449 | . . . 4 ⊢ ((normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) → (MetOpen‘(normℎ ∘ −ℎ )) ∈ (TopOn‘ ℋ)) |
| 21 | 18, 20 | mp1i 13 | . . 3 ⊢ (𝜑 → (MetOpen‘(normℎ ∘ −ℎ )) ∈ (TopOn‘ ℋ)) |
| 22 | hlimadd.5 | . . . 4 ⊢ (𝜑 → 𝐹 ⇝𝑣 𝐴) | |
| 23 | 15 | hhnv 31184 | . . . . . . 7 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
| 24 | df-hba 30988 | . . . . . . 7 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 25 | 15, 23, 24, 17, 19 | h2hlm 30999 | . . . . . 6 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ)) |
| 26 | resss 6019 | . . . . . 6 ⊢ ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) | |
| 27 | 25, 26 | eqsstri 4030 | . . . . 5 ⊢ ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) |
| 28 | 27 | ssbri 5188 | . . . 4 ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐴) |
| 29 | 22, 28 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐴) |
| 30 | hlimadd.6 | . . . 4 ⊢ (𝜑 → 𝐺 ⇝𝑣 𝐵) | |
| 31 | 27 | ssbri 5188 | . . . 4 ⊢ (𝐺 ⇝𝑣 𝐵 → 𝐺(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐵) |
| 32 | 30, 31 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))𝐵) |
| 33 | 15 | hhva 31185 | . . . . 5 ⊢ +ℎ = ( +𝑣 ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 34 | 17, 19, 33 | vacn 30713 | . . . 4 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec → +ℎ ∈ (((MetOpen‘(normℎ ∘ −ℎ )) ×t (MetOpen‘(normℎ ∘ −ℎ ))) Cn (MetOpen‘(normℎ ∘ −ℎ )))) |
| 35 | 23, 34 | mp1i 13 | . . 3 ⊢ (𝜑 → +ℎ ∈ (((MetOpen‘(normℎ ∘ −ℎ )) ×t (MetOpen‘(normℎ ∘ −ℎ ))) Cn (MetOpen‘(normℎ ∘ −ℎ )))) |
| 36 | 13, 14, 21, 21, 1, 3, 29, 32, 35, 7 | lmcn2 23657 | . 2 ⊢ (𝜑 → 𝐻(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))(𝐴 +ℎ 𝐵)) |
| 37 | 25 | breqi 5149 | . . 3 ⊢ (𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵) ↔ 𝐻((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ))(𝐴 +ℎ 𝐵)) |
| 38 | ovex 7464 | . . . 4 ⊢ (𝐴 +ℎ 𝐵) ∈ V | |
| 39 | 38 | brresi 6006 | . . 3 ⊢ (𝐻((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ))(𝐴 +ℎ 𝐵) ↔ (𝐻 ∈ ( ℋ ↑m ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))(𝐴 +ℎ 𝐵))) |
| 40 | 37, 39 | bitri 275 | . 2 ⊢ (𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵) ↔ (𝐻 ∈ ( ℋ ↑m ℕ) ∧ 𝐻(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))(𝐴 +ℎ 𝐵))) |
| 41 | 12, 36, 40 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4632 class class class wbr 5143 ↦ cmpt 5225 ↾ cres 5687 ∘ ccom 5689 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 1c1 11156 ℕcn 12266 ∞Metcxmet 21349 MetOpencmopn 21354 TopOnctopon 22916 Cn ccn 23232 ⇝𝑡clm 23234 ×t ctx 23568 NrmCVeccnv 30603 ℋchba 30938 +ℎ cva 30939 ·ℎ csm 30940 normℎcno 30942 −ℎ cmv 30944 ⇝𝑣 chli 30946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 ax-hilex 31018 ax-hfvadd 31019 ax-hvcom 31020 ax-hvass 31021 ax-hv0cl 31022 ax-hvaddid 31023 ax-hfvmul 31024 ax-hvmulid 31025 ax-hvmulass 31026 ax-hvdistr1 31027 ax-hvdistr2 31028 ax-hvmul0 31029 ax-hfi 31098 ax-his1 31101 ax-his2 31102 ax-his3 31103 ax-his4 31104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-icc 13394 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cn 23235 df-cnp 23236 df-lm 23237 df-tx 23570 df-hmeo 23763 df-xms 24330 df-tms 24332 df-grpo 30512 df-gid 30513 df-ginv 30514 df-gdiv 30515 df-ablo 30564 df-vc 30578 df-nv 30611 df-va 30614 df-ba 30615 df-sm 30616 df-0v 30617 df-vs 30618 df-nmcv 30619 df-ims 30620 df-hnorm 30987 df-hba 30988 df-hvsub 30990 df-hlim 30991 |
| This theorem is referenced by: chscllem4 31659 |
| Copyright terms: Public domain | W3C validator |