![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > axhvdistr2-zf | Structured version Visualization version GIF version |
Description: Derive Axiom ax-hvdistr2 30262 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axhil.1 | β’ π = β¨β¨ +β , Β·β β©, normββ© |
axhil.2 | β’ π β CHilOLD |
Ref | Expression |
---|---|
axhvdistr2-zf | β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β ((π΄ + π΅) Β·β πΆ) = ((π΄ Β·β πΆ) +β (π΅ Β·β πΆ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axhil.2 | . 2 β’ π β CHilOLD | |
2 | df-hba 30222 | . . . 4 β’ β = (BaseSetββ¨β¨ +β , Β·β β©, normββ©) | |
3 | axhil.1 | . . . . 5 β’ π = β¨β¨ +β , Β·β β©, normββ© | |
4 | 3 | fveq2i 6895 | . . . 4 β’ (BaseSetβπ) = (BaseSetββ¨β¨ +β , Β·β β©, normββ©) |
5 | 2, 4 | eqtr4i 2764 | . . 3 β’ β = (BaseSetβπ) |
6 | 1 | hlnvi 30145 | . . . 4 β’ π β NrmCVec |
7 | 3, 6 | h2hva 30227 | . . 3 β’ +β = ( +π£ βπ) |
8 | 3, 6 | h2hsm 30228 | . . 3 β’ Β·β = ( Β·π OLD βπ) |
9 | 5, 7, 8 | hldir 30161 | . 2 β’ ((π β CHilOLD β§ (π΄ β β β§ π΅ β β β§ πΆ β β)) β ((π΄ + π΅) Β·β πΆ) = ((π΄ Β·β πΆ) +β (π΅ Β·β πΆ))) |
10 | 1, 9 | mpan 689 | 1 β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β ((π΄ + π΅) Β·β πΆ) = ((π΄ Β·β πΆ) +β (π΅ Β·β πΆ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1088 = wceq 1542 β wcel 2107 β¨cop 4635 βcfv 6544 (class class class)co 7409 βcc 11108 + caddc 11113 BaseSetcba 29839 CHilOLDchlo 30138 βchba 30172 +β cva 30173 Β·β csm 30174 normβcno 30176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-1st 7975 df-2nd 7976 df-vc 29812 df-nv 29845 df-va 29848 df-ba 29849 df-sm 29850 df-0v 29851 df-nmcv 29853 df-cbn 30116 df-hlo 30139 df-hba 30222 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |