HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhthlem2 Structured version   Visualization version   GIF version

Theorem pjhthlem2 31294
Description: Lemma for pjhth 31295. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjhth.1 𝐻C
pjhth.2 (𝜑𝐴 ∈ ℋ)
Assertion
Ref Expression
pjhthlem2 (𝜑 → ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦

Proof of Theorem pjhthlem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pjhth.2 . . . . . 6 (𝜑𝐴 ∈ ℋ)
21adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → 𝐴 ∈ ℋ)
3 pjhth.1 . . . . . . 7 𝐻C
43cheli 31134 . . . . . 6 (𝑥𝐻𝑥 ∈ ℋ)
54ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → 𝑥 ∈ ℋ)
6 hvsubcl 30919 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 𝑥) ∈ ℋ)
72, 5, 6syl2anc 584 . . . 4 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → (𝐴 𝑥) ∈ ℋ)
82adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → 𝐴 ∈ ℋ)
9 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → 𝑥𝐻)
10 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → 𝑦𝐻)
11 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))
12 eqid 2729 . . . . . 6 (((𝐴 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1)) = (((𝐴 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1))
133, 8, 9, 10, 11, 12pjhthlem1 31293 . . . . 5 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → ((𝐴 𝑥) ·ih 𝑦) = 0)
1413ralrimiva 3125 . . . 4 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → ∀𝑦𝐻 ((𝐴 𝑥) ·ih 𝑦) = 0)
153chshii 31129 . . . . 5 𝐻S
16 shocel 31184 . . . . 5 (𝐻S → ((𝐴 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 𝑥) ∈ ℋ ∧ ∀𝑦𝐻 ((𝐴 𝑥) ·ih 𝑦) = 0)))
1715, 16ax-mp 5 . . . 4 ((𝐴 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 𝑥) ∈ ℋ ∧ ∀𝑦𝐻 ((𝐴 𝑥) ·ih 𝑦) = 0))
187, 14, 17sylanbrc 583 . . 3 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → (𝐴 𝑥) ∈ (⊥‘𝐻))
19 hvpncan3 30944 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑥 + (𝐴 𝑥)) = 𝐴)
205, 2, 19syl2anc 584 . . . 4 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → (𝑥 + (𝐴 𝑥)) = 𝐴)
2120eqcomd 2735 . . 3 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → 𝐴 = (𝑥 + (𝐴 𝑥)))
22 oveq2 7377 . . . 4 (𝑦 = (𝐴 𝑥) → (𝑥 + 𝑦) = (𝑥 + (𝐴 𝑥)))
2322rspceeqv 3608 . . 3 (((𝐴 𝑥) ∈ (⊥‘𝐻) ∧ 𝐴 = (𝑥 + (𝐴 𝑥))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
2418, 21, 23syl2anc 584 . 2 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
25 df-hba 30871 . . . 4 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
26 eqid 2729 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
2726hhvs 31072 . . . 4 = ( −𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
2826hhnm 31073 . . . 4 norm = (normCV‘⟨⟨ + , · ⟩, norm⟩)
29 eqid 2729 . . . . 5 ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
3029, 15hhssba 31173 . . . 4 𝐻 = (BaseSet‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)
3126hhph 31080 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD
3231a1i 11 . . . 4 (𝜑 → ⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD)
3326, 29hhsst 31168 . . . . . . 7 (𝐻S → ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ (SubSp‘⟨⟨ + , · ⟩, norm⟩))
3415, 33ax-mp 5 . . . . . 6 ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ (SubSp‘⟨⟨ + , · ⟩, norm⟩)
3529, 3hhssbnOLD 31181 . . . . . 6 ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ CBan
36 elin 3927 . . . . . 6 (⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ ((SubSp‘⟨⟨ + , · ⟩, norm⟩) ∩ CBan) ↔ (⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ (SubSp‘⟨⟨ + , · ⟩, norm⟩) ∧ ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ CBan))
3734, 35, 36mpbir2an 711 . . . . 5 ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ ((SubSp‘⟨⟨ + , · ⟩, norm⟩) ∩ CBan)
3837a1i 11 . . . 4 (𝜑 → ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ ((SubSp‘⟨⟨ + , · ⟩, norm⟩) ∩ CBan))
3925, 27, 28, 30, 32, 38, 1minveco 30786 . . 3 (𝜑 → ∃!𝑥𝐻𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))
40 reurex 3355 . . 3 (∃!𝑥𝐻𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)) → ∃𝑥𝐻𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))
4139, 40syl 17 . 2 (𝜑 → ∃𝑥𝐻𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))
4224, 41reximddv 3149 1 (𝜑 → ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3349  cin 3910  cop 4591   class class class wbr 5102   × cxp 5629  cres 5633  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047  cle 11185   / cdiv 11811  SubSpcss 30623  CPreHilOLDccphlo 30714  CBanccbn 30764  chba 30821   + cva 30822   · csm 30823   ·ih csp 30824  normcno 30825   cmv 30827   S csh 30830   C cch 30831  cort 30832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124  ax-hilex 30901  ax-hfvadd 30902  ax-hvcom 30903  ax-hvass 30904  ax-hv0cl 30905  ax-hvaddid 30906  ax-hfvmul 30907  ax-hvmulid 30908  ax-hvmulass 30909  ax-hvdistr1 30910  ax-hvdistr2 30911  ax-hvmul0 30912  ax-hfi 30981  ax-his1 30984  ax-his2 30985  ax-his3 30986  ax-his4 30987  ax-hcompl 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ico 13288  df-icc 13289  df-fz 13445  df-fl 13730  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-rest 17361  df-topgen 17382  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-top 22757  df-topon 22774  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lm 23092  df-haus 23178  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-cfil 25131  df-cau 25132  df-cmet 25133  df-grpo 30395  df-gid 30396  df-ginv 30397  df-gdiv 30398  df-ablo 30447  df-vc 30461  df-nv 30494  df-va 30497  df-ba 30498  df-sm 30499  df-0v 30500  df-vs 30501  df-nmcv 30502  df-ims 30503  df-ssp 30624  df-ph 30715  df-cbn 30765  df-hnorm 30870  df-hba 30871  df-hvsub 30873  df-hlim 30874  df-hcau 30875  df-sh 31109  df-ch 31123  df-oc 31154  df-ch0 31155
This theorem is referenced by:  pjhth  31295  omlsii  31305
  Copyright terms: Public domain W3C validator