| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjhthlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for pjhth 31379. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjhth.1 | ⊢ 𝐻 ∈ Cℋ |
| pjhth.2 | ⊢ (𝜑 → 𝐴 ∈ ℋ) |
| Ref | Expression |
|---|---|
| pjhthlem2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjhth.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℋ) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → 𝐴 ∈ ℋ) |
| 3 | pjhth.1 | . . . . . . 7 ⊢ 𝐻 ∈ Cℋ | |
| 4 | 3 | cheli 31218 | . . . . . 6 ⊢ (𝑥 ∈ 𝐻 → 𝑥 ∈ ℋ) |
| 5 | 4 | ad2antrl 728 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → 𝑥 ∈ ℋ) |
| 6 | hvsubcl 31003 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 −ℎ 𝑥) ∈ ℋ) | |
| 7 | 2, 5, 6 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → (𝐴 −ℎ 𝑥) ∈ ℋ) |
| 8 | 2 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → 𝐴 ∈ ℋ) |
| 9 | simplrl 776 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻) | |
| 10 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → 𝑦 ∈ 𝐻) | |
| 11 | simplrr 777 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) | |
| 12 | eqid 2736 | . . . . . 6 ⊢ (((𝐴 −ℎ 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1)) = (((𝐴 −ℎ 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1)) | |
| 13 | 3, 8, 9, 10, 11, 12 | pjhthlem1 31377 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0) |
| 14 | 13 | ralrimiva 3133 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → ∀𝑦 ∈ 𝐻 ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0) |
| 15 | 3 | chshii 31213 | . . . . 5 ⊢ 𝐻 ∈ Sℋ |
| 16 | shocel 31268 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → ((𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 −ℎ 𝑥) ∈ ℋ ∧ ∀𝑦 ∈ 𝐻 ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0))) | |
| 17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ ((𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 −ℎ 𝑥) ∈ ℋ ∧ ∀𝑦 ∈ 𝐻 ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0)) |
| 18 | 7, 14, 17 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → (𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻)) |
| 19 | hvpncan3 31028 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑥 +ℎ (𝐴 −ℎ 𝑥)) = 𝐴) | |
| 20 | 5, 2, 19 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → (𝑥 +ℎ (𝐴 −ℎ 𝑥)) = 𝐴) |
| 21 | 20 | eqcomd 2742 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → 𝐴 = (𝑥 +ℎ (𝐴 −ℎ 𝑥))) |
| 22 | oveq2 7418 | . . . 4 ⊢ (𝑦 = (𝐴 −ℎ 𝑥) → (𝑥 +ℎ 𝑦) = (𝑥 +ℎ (𝐴 −ℎ 𝑥))) | |
| 23 | 22 | rspceeqv 3629 | . . 3 ⊢ (((𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻) ∧ 𝐴 = (𝑥 +ℎ (𝐴 −ℎ 𝑥))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
| 24 | 18, 21, 23 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
| 25 | df-hba 30955 | . . . 4 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 26 | eqid 2736 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 27 | 26 | hhvs 31156 | . . . 4 ⊢ −ℎ = ( −𝑣 ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 28 | 26 | hhnm 31157 | . . . 4 ⊢ normℎ = (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 29 | eqid 2736 | . . . . 5 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
| 30 | 29, 15 | hhssba 31257 | . . . 4 ⊢ 𝐻 = (BaseSet‘〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉) |
| 31 | 26 | hhph 31164 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ CPreHilOLD |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (𝜑 → 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ CPreHilOLD) |
| 33 | 26, 29 | hhsst 31252 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
| 34 | 15, 33 | ax-mp 5 | . . . . . 6 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 35 | 29, 3 | hhssbnOLD 31265 | . . . . . 6 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ CBan |
| 36 | elin 3947 | . . . . . 6 ⊢ (〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ ((SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∩ CBan) ↔ (〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∧ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ CBan)) | |
| 37 | 34, 35, 36 | mpbir2an 711 | . . . . 5 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ ((SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∩ CBan) |
| 38 | 37 | a1i 11 | . . . 4 ⊢ (𝜑 → 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ ((SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∩ CBan)) |
| 39 | 25, 27, 28, 30, 32, 38, 1 | minveco 30870 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) |
| 40 | reurex 3368 | . . 3 ⊢ (∃!𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)) → ∃𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) | |
| 41 | 39, 40 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) |
| 42 | 24, 41 | reximddv 3157 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 ∃!wreu 3362 ∩ cin 3930 〈cop 4612 class class class wbr 5124 × cxp 5657 ↾ cres 5661 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 1c1 11135 + caddc 11137 ≤ cle 11275 / cdiv 11899 SubSpcss 30707 CPreHilOLDccphlo 30798 CBanccbn 30848 ℋchba 30905 +ℎ cva 30906 ·ℎ csm 30907 ·ih csp 30908 normℎcno 30909 −ℎ cmv 30911 Sℋ csh 30914 Cℋ cch 30915 ⊥cort 30916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cc 10454 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 ax-hilex 30985 ax-hfvadd 30986 ax-hvcom 30987 ax-hvass 30988 ax-hv0cl 30989 ax-hvaddid 30990 ax-hfvmul 30991 ax-hvmulid 30992 ax-hvmulass 30993 ax-hvdistr1 30994 ax-hvdistr2 30995 ax-hvmul0 30996 ax-hfi 31065 ax-his1 31068 ax-his2 31069 ax-his3 31070 ax-his4 31071 ax-hcompl 31188 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-omul 8490 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-acn 9961 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ico 13373 df-icc 13374 df-fz 13530 df-fl 13814 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-rlim 15510 df-rest 17441 df-topgen 17462 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-top 22837 df-topon 22854 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lm 23172 df-haus 23258 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-cfil 25212 df-cau 25213 df-cmet 25214 df-grpo 30479 df-gid 30480 df-ginv 30481 df-gdiv 30482 df-ablo 30531 df-vc 30545 df-nv 30578 df-va 30581 df-ba 30582 df-sm 30583 df-0v 30584 df-vs 30585 df-nmcv 30586 df-ims 30587 df-ssp 30708 df-ph 30799 df-cbn 30849 df-hnorm 30954 df-hba 30955 df-hvsub 30957 df-hlim 30958 df-hcau 30959 df-sh 31193 df-ch 31207 df-oc 31238 df-ch0 31239 |
| This theorem is referenced by: pjhth 31379 omlsii 31389 |
| Copyright terms: Public domain | W3C validator |