| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjhthlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for pjhth 31295. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjhth.1 | ⊢ 𝐻 ∈ Cℋ |
| pjhth.2 | ⊢ (𝜑 → 𝐴 ∈ ℋ) |
| Ref | Expression |
|---|---|
| pjhthlem2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjhth.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℋ) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → 𝐴 ∈ ℋ) |
| 3 | pjhth.1 | . . . . . . 7 ⊢ 𝐻 ∈ Cℋ | |
| 4 | 3 | cheli 31134 | . . . . . 6 ⊢ (𝑥 ∈ 𝐻 → 𝑥 ∈ ℋ) |
| 5 | 4 | ad2antrl 728 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → 𝑥 ∈ ℋ) |
| 6 | hvsubcl 30919 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 −ℎ 𝑥) ∈ ℋ) | |
| 7 | 2, 5, 6 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → (𝐴 −ℎ 𝑥) ∈ ℋ) |
| 8 | 2 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → 𝐴 ∈ ℋ) |
| 9 | simplrl 776 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻) | |
| 10 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → 𝑦 ∈ 𝐻) | |
| 11 | simplrr 777 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) | |
| 12 | eqid 2729 | . . . . . 6 ⊢ (((𝐴 −ℎ 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1)) = (((𝐴 −ℎ 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1)) | |
| 13 | 3, 8, 9, 10, 11, 12 | pjhthlem1 31293 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0) |
| 14 | 13 | ralrimiva 3125 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → ∀𝑦 ∈ 𝐻 ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0) |
| 15 | 3 | chshii 31129 | . . . . 5 ⊢ 𝐻 ∈ Sℋ |
| 16 | shocel 31184 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → ((𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 −ℎ 𝑥) ∈ ℋ ∧ ∀𝑦 ∈ 𝐻 ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0))) | |
| 17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ ((𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 −ℎ 𝑥) ∈ ℋ ∧ ∀𝑦 ∈ 𝐻 ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0)) |
| 18 | 7, 14, 17 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → (𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻)) |
| 19 | hvpncan3 30944 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑥 +ℎ (𝐴 −ℎ 𝑥)) = 𝐴) | |
| 20 | 5, 2, 19 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → (𝑥 +ℎ (𝐴 −ℎ 𝑥)) = 𝐴) |
| 21 | 20 | eqcomd 2735 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → 𝐴 = (𝑥 +ℎ (𝐴 −ℎ 𝑥))) |
| 22 | oveq2 7377 | . . . 4 ⊢ (𝑦 = (𝐴 −ℎ 𝑥) → (𝑥 +ℎ 𝑦) = (𝑥 +ℎ (𝐴 −ℎ 𝑥))) | |
| 23 | 22 | rspceeqv 3608 | . . 3 ⊢ (((𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻) ∧ 𝐴 = (𝑥 +ℎ (𝐴 −ℎ 𝑥))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
| 24 | 18, 21, 23 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
| 25 | df-hba 30871 | . . . 4 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 26 | eqid 2729 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 27 | 26 | hhvs 31072 | . . . 4 ⊢ −ℎ = ( −𝑣 ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 28 | 26 | hhnm 31073 | . . . 4 ⊢ normℎ = (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 29 | eqid 2729 | . . . . 5 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
| 30 | 29, 15 | hhssba 31173 | . . . 4 ⊢ 𝐻 = (BaseSet‘〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉) |
| 31 | 26 | hhph 31080 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ CPreHilOLD |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (𝜑 → 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ CPreHilOLD) |
| 33 | 26, 29 | hhsst 31168 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
| 34 | 15, 33 | ax-mp 5 | . . . . . 6 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 35 | 29, 3 | hhssbnOLD 31181 | . . . . . 6 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ CBan |
| 36 | elin 3927 | . . . . . 6 ⊢ (〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ ((SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∩ CBan) ↔ (〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∧ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ CBan)) | |
| 37 | 34, 35, 36 | mpbir2an 711 | . . . . 5 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ ((SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∩ CBan) |
| 38 | 37 | a1i 11 | . . . 4 ⊢ (𝜑 → 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ ((SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∩ CBan)) |
| 39 | 25, 27, 28, 30, 32, 38, 1 | minveco 30786 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) |
| 40 | reurex 3355 | . . 3 ⊢ (∃!𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)) → ∃𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) | |
| 41 | 39, 40 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) |
| 42 | 24, 41 | reximddv 3149 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∃!wreu 3349 ∩ cin 3910 〈cop 4591 class class class wbr 5102 × cxp 5629 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 + caddc 11047 ≤ cle 11185 / cdiv 11811 SubSpcss 30623 CPreHilOLDccphlo 30714 CBanccbn 30764 ℋchba 30821 +ℎ cva 30822 ·ℎ csm 30823 ·ih csp 30824 normℎcno 30825 −ℎ cmv 30827 Sℋ csh 30830 Cℋ cch 30831 ⊥cort 30832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cc 10364 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 ax-hilex 30901 ax-hfvadd 30902 ax-hvcom 30903 ax-hvass 30904 ax-hv0cl 30905 ax-hvaddid 30906 ax-hfvmul 30907 ax-hvmulid 30908 ax-hvmulass 30909 ax-hvdistr1 30910 ax-hvdistr2 30911 ax-hvmul0 30912 ax-hfi 30981 ax-his1 30984 ax-his2 30985 ax-his3 30986 ax-his4 30987 ax-hcompl 31104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-acn 9871 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ico 13288 df-icc 13289 df-fz 13445 df-fl 13730 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-rlim 15431 df-rest 17361 df-topgen 17382 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-top 22757 df-topon 22774 df-bases 22809 df-cld 22882 df-ntr 22883 df-cls 22884 df-nei 22961 df-lm 23092 df-haus 23178 df-fil 23709 df-fm 23801 df-flim 23802 df-flf 23803 df-cfil 25131 df-cau 25132 df-cmet 25133 df-grpo 30395 df-gid 30396 df-ginv 30397 df-gdiv 30398 df-ablo 30447 df-vc 30461 df-nv 30494 df-va 30497 df-ba 30498 df-sm 30499 df-0v 30500 df-vs 30501 df-nmcv 30502 df-ims 30503 df-ssp 30624 df-ph 30715 df-cbn 30765 df-hnorm 30870 df-hba 30871 df-hvsub 30873 df-hlim 30874 df-hcau 30875 df-sh 31109 df-ch 31123 df-oc 31154 df-ch0 31155 |
| This theorem is referenced by: pjhth 31295 omlsii 31305 |
| Copyright terms: Public domain | W3C validator |