HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhthlem2 Structured version   Visualization version   GIF version

Theorem pjhthlem2 31424
Description: Lemma for pjhth 31425. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjhth.1 𝐻C
pjhth.2 (𝜑𝐴 ∈ ℋ)
Assertion
Ref Expression
pjhthlem2 (𝜑 → ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦

Proof of Theorem pjhthlem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pjhth.2 . . . . . 6 (𝜑𝐴 ∈ ℋ)
21adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → 𝐴 ∈ ℋ)
3 pjhth.1 . . . . . . 7 𝐻C
43cheli 31264 . . . . . 6 (𝑥𝐻𝑥 ∈ ℋ)
54ad2antrl 727 . . . . 5 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → 𝑥 ∈ ℋ)
6 hvsubcl 31049 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 𝑥) ∈ ℋ)
72, 5, 6syl2anc 583 . . . 4 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → (𝐴 𝑥) ∈ ℋ)
82adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → 𝐴 ∈ ℋ)
9 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → 𝑥𝐻)
10 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → 𝑦𝐻)
11 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))
12 eqid 2740 . . . . . 6 (((𝐴 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1)) = (((𝐴 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1))
133, 8, 9, 10, 11, 12pjhthlem1 31423 . . . . 5 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → ((𝐴 𝑥) ·ih 𝑦) = 0)
1413ralrimiva 3152 . . . 4 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → ∀𝑦𝐻 ((𝐴 𝑥) ·ih 𝑦) = 0)
153chshii 31259 . . . . 5 𝐻S
16 shocel 31314 . . . . 5 (𝐻S → ((𝐴 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 𝑥) ∈ ℋ ∧ ∀𝑦𝐻 ((𝐴 𝑥) ·ih 𝑦) = 0)))
1715, 16ax-mp 5 . . . 4 ((𝐴 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 𝑥) ∈ ℋ ∧ ∀𝑦𝐻 ((𝐴 𝑥) ·ih 𝑦) = 0))
187, 14, 17sylanbrc 582 . . 3 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → (𝐴 𝑥) ∈ (⊥‘𝐻))
19 hvpncan3 31074 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑥 + (𝐴 𝑥)) = 𝐴)
205, 2, 19syl2anc 583 . . . 4 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → (𝑥 + (𝐴 𝑥)) = 𝐴)
2120eqcomd 2746 . . 3 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → 𝐴 = (𝑥 + (𝐴 𝑥)))
22 oveq2 7456 . . . 4 (𝑦 = (𝐴 𝑥) → (𝑥 + 𝑦) = (𝑥 + (𝐴 𝑥)))
2322rspceeqv 3658 . . 3 (((𝐴 𝑥) ∈ (⊥‘𝐻) ∧ 𝐴 = (𝑥 + (𝐴 𝑥))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
2418, 21, 23syl2anc 583 . 2 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
25 df-hba 31001 . . . 4 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
26 eqid 2740 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
2726hhvs 31202 . . . 4 = ( −𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
2826hhnm 31203 . . . 4 norm = (normCV‘⟨⟨ + , · ⟩, norm⟩)
29 eqid 2740 . . . . 5 ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
3029, 15hhssba 31303 . . . 4 𝐻 = (BaseSet‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)
3126hhph 31210 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD
3231a1i 11 . . . 4 (𝜑 → ⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD)
3326, 29hhsst 31298 . . . . . . 7 (𝐻S → ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ (SubSp‘⟨⟨ + , · ⟩, norm⟩))
3415, 33ax-mp 5 . . . . . 6 ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ (SubSp‘⟨⟨ + , · ⟩, norm⟩)
3529, 3hhssbnOLD 31311 . . . . . 6 ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ CBan
36 elin 3992 . . . . . 6 (⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ ((SubSp‘⟨⟨ + , · ⟩, norm⟩) ∩ CBan) ↔ (⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ (SubSp‘⟨⟨ + , · ⟩, norm⟩) ∧ ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ CBan))
3734, 35, 36mpbir2an 710 . . . . 5 ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ ((SubSp‘⟨⟨ + , · ⟩, norm⟩) ∩ CBan)
3837a1i 11 . . . 4 (𝜑 → ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ ((SubSp‘⟨⟨ + , · ⟩, norm⟩) ∩ CBan))
3925, 27, 28, 30, 32, 38, 1minveco 30916 . . 3 (𝜑 → ∃!𝑥𝐻𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))
40 reurex 3392 . . 3 (∃!𝑥𝐻𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)) → ∃𝑥𝐻𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))
4139, 40syl 17 . 2 (𝜑 → ∃𝑥𝐻𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))
4224, 41reximddv 3177 1 (𝜑 → ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  ∃!wreu 3386  cin 3975  cop 4654   class class class wbr 5166   × cxp 5698  cres 5702  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187  cle 11325   / cdiv 11947  SubSpcss 30753  CPreHilOLDccphlo 30844  CBanccbn 30894  chba 30951   + cva 30952   · csm 30953   ·ih csp 30954  normcno 30955   cmv 30957   S csh 30960   C cch 30961  cort 30962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr1 31040  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117  ax-hcompl 31234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-icc 13414  df-fz 13568  df-fl 13843  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lm 23258  df-haus 23344  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-cfil 25308  df-cau 25309  df-cmet 25310  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-ssp 30754  df-ph 30845  df-cbn 30895  df-hnorm 31000  df-hba 31001  df-hvsub 31003  df-hlim 31004  df-hcau 31005  df-sh 31239  df-ch 31253  df-oc 31284  df-ch0 31285
This theorem is referenced by:  pjhth  31425  omlsii  31435
  Copyright terms: Public domain W3C validator