| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjhthlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for pjhth 31337. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjhth.1 | ⊢ 𝐻 ∈ Cℋ |
| pjhth.2 | ⊢ (𝜑 → 𝐴 ∈ ℋ) |
| Ref | Expression |
|---|---|
| pjhthlem2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjhth.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℋ) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → 𝐴 ∈ ℋ) |
| 3 | pjhth.1 | . . . . . . 7 ⊢ 𝐻 ∈ Cℋ | |
| 4 | 3 | cheli 31176 | . . . . . 6 ⊢ (𝑥 ∈ 𝐻 → 𝑥 ∈ ℋ) |
| 5 | 4 | ad2antrl 728 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → 𝑥 ∈ ℋ) |
| 6 | hvsubcl 30961 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 −ℎ 𝑥) ∈ ℋ) | |
| 7 | 2, 5, 6 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → (𝐴 −ℎ 𝑥) ∈ ℋ) |
| 8 | 2 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → 𝐴 ∈ ℋ) |
| 9 | simplrl 776 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻) | |
| 10 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → 𝑦 ∈ 𝐻) | |
| 11 | simplrr 777 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) | |
| 12 | eqid 2729 | . . . . . 6 ⊢ (((𝐴 −ℎ 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1)) = (((𝐴 −ℎ 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1)) | |
| 13 | 3, 8, 9, 10, 11, 12 | pjhthlem1 31335 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0) |
| 14 | 13 | ralrimiva 3121 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → ∀𝑦 ∈ 𝐻 ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0) |
| 15 | 3 | chshii 31171 | . . . . 5 ⊢ 𝐻 ∈ Sℋ |
| 16 | shocel 31226 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → ((𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 −ℎ 𝑥) ∈ ℋ ∧ ∀𝑦 ∈ 𝐻 ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0))) | |
| 17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ ((𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 −ℎ 𝑥) ∈ ℋ ∧ ∀𝑦 ∈ 𝐻 ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0)) |
| 18 | 7, 14, 17 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → (𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻)) |
| 19 | hvpncan3 30986 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑥 +ℎ (𝐴 −ℎ 𝑥)) = 𝐴) | |
| 20 | 5, 2, 19 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → (𝑥 +ℎ (𝐴 −ℎ 𝑥)) = 𝐴) |
| 21 | 20 | eqcomd 2735 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → 𝐴 = (𝑥 +ℎ (𝐴 −ℎ 𝑥))) |
| 22 | oveq2 7357 | . . . 4 ⊢ (𝑦 = (𝐴 −ℎ 𝑥) → (𝑥 +ℎ 𝑦) = (𝑥 +ℎ (𝐴 −ℎ 𝑥))) | |
| 23 | 22 | rspceeqv 3600 | . . 3 ⊢ (((𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻) ∧ 𝐴 = (𝑥 +ℎ (𝐴 −ℎ 𝑥))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
| 24 | 18, 21, 23 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
| 25 | df-hba 30913 | . . . 4 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 26 | eqid 2729 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 27 | 26 | hhvs 31114 | . . . 4 ⊢ −ℎ = ( −𝑣 ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 28 | 26 | hhnm 31115 | . . . 4 ⊢ normℎ = (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 29 | eqid 2729 | . . . . 5 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
| 30 | 29, 15 | hhssba 31215 | . . . 4 ⊢ 𝐻 = (BaseSet‘〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉) |
| 31 | 26 | hhph 31122 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ CPreHilOLD |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (𝜑 → 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ CPreHilOLD) |
| 33 | 26, 29 | hhsst 31210 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
| 34 | 15, 33 | ax-mp 5 | . . . . . 6 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 35 | 29, 3 | hhssbnOLD 31223 | . . . . . 6 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ CBan |
| 36 | elin 3919 | . . . . . 6 ⊢ (〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ ((SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∩ CBan) ↔ (〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∧ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ CBan)) | |
| 37 | 34, 35, 36 | mpbir2an 711 | . . . . 5 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ ((SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∩ CBan) |
| 38 | 37 | a1i 11 | . . . 4 ⊢ (𝜑 → 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ ((SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∩ CBan)) |
| 39 | 25, 27, 28, 30, 32, 38, 1 | minveco 30828 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) |
| 40 | reurex 3347 | . . 3 ⊢ (∃!𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)) → ∃𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) | |
| 41 | 39, 40 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) |
| 42 | 24, 41 | reximddv 3145 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∃!wreu 3341 ∩ cin 3902 〈cop 4583 class class class wbr 5092 × cxp 5617 ↾ cres 5621 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 1c1 11010 + caddc 11012 ≤ cle 11150 / cdiv 11777 SubSpcss 30665 CPreHilOLDccphlo 30756 CBanccbn 30806 ℋchba 30863 +ℎ cva 30864 ·ℎ csm 30865 ·ih csp 30866 normℎcno 30867 −ℎ cmv 30869 Sℋ csh 30872 Cℋ cch 30873 ⊥cort 30874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 ax-hilex 30943 ax-hfvadd 30944 ax-hvcom 30945 ax-hvass 30946 ax-hv0cl 30947 ax-hvaddid 30948 ax-hfvmul 30949 ax-hvmulid 30950 ax-hvmulass 30951 ax-hvdistr1 30952 ax-hvdistr2 30953 ax-hvmul0 30954 ax-hfi 31023 ax-his1 31026 ax-his2 31027 ax-his3 31028 ax-his4 31029 ax-hcompl 31146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ico 13254 df-icc 13255 df-fz 13411 df-fl 13696 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-rest 17326 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-top 22779 df-topon 22796 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lm 23114 df-haus 23200 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-cfil 25153 df-cau 25154 df-cmet 25155 df-grpo 30437 df-gid 30438 df-ginv 30439 df-gdiv 30440 df-ablo 30489 df-vc 30503 df-nv 30536 df-va 30539 df-ba 30540 df-sm 30541 df-0v 30542 df-vs 30543 df-nmcv 30544 df-ims 30545 df-ssp 30666 df-ph 30757 df-cbn 30807 df-hnorm 30912 df-hba 30913 df-hvsub 30915 df-hlim 30916 df-hcau 30917 df-sh 31151 df-ch 31165 df-oc 31196 df-ch0 31197 |
| This theorem is referenced by: pjhth 31337 omlsii 31347 |
| Copyright terms: Public domain | W3C validator |