![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjhthlem2 | Structured version Visualization version GIF version |
Description: Lemma for pjhth 31422. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjhth.1 | ⊢ 𝐻 ∈ Cℋ |
pjhth.2 | ⊢ (𝜑 → 𝐴 ∈ ℋ) |
Ref | Expression |
---|---|
pjhthlem2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjhth.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℋ) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → 𝐴 ∈ ℋ) |
3 | pjhth.1 | . . . . . . 7 ⊢ 𝐻 ∈ Cℋ | |
4 | 3 | cheli 31261 | . . . . . 6 ⊢ (𝑥 ∈ 𝐻 → 𝑥 ∈ ℋ) |
5 | 4 | ad2antrl 728 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → 𝑥 ∈ ℋ) |
6 | hvsubcl 31046 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 −ℎ 𝑥) ∈ ℋ) | |
7 | 2, 5, 6 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → (𝐴 −ℎ 𝑥) ∈ ℋ) |
8 | 2 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → 𝐴 ∈ ℋ) |
9 | simplrl 777 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻) | |
10 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → 𝑦 ∈ 𝐻) | |
11 | simplrr 778 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) | |
12 | eqid 2735 | . . . . . 6 ⊢ (((𝐴 −ℎ 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1)) = (((𝐴 −ℎ 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1)) | |
13 | 3, 8, 9, 10, 11, 12 | pjhthlem1 31420 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0) |
14 | 13 | ralrimiva 3144 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → ∀𝑦 ∈ 𝐻 ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0) |
15 | 3 | chshii 31256 | . . . . 5 ⊢ 𝐻 ∈ Sℋ |
16 | shocel 31311 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → ((𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 −ℎ 𝑥) ∈ ℋ ∧ ∀𝑦 ∈ 𝐻 ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0))) | |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ ((𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 −ℎ 𝑥) ∈ ℋ ∧ ∀𝑦 ∈ 𝐻 ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0)) |
18 | 7, 14, 17 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → (𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻)) |
19 | hvpncan3 31071 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑥 +ℎ (𝐴 −ℎ 𝑥)) = 𝐴) | |
20 | 5, 2, 19 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → (𝑥 +ℎ (𝐴 −ℎ 𝑥)) = 𝐴) |
21 | 20 | eqcomd 2741 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → 𝐴 = (𝑥 +ℎ (𝐴 −ℎ 𝑥))) |
22 | oveq2 7439 | . . . 4 ⊢ (𝑦 = (𝐴 −ℎ 𝑥) → (𝑥 +ℎ 𝑦) = (𝑥 +ℎ (𝐴 −ℎ 𝑥))) | |
23 | 22 | rspceeqv 3645 | . . 3 ⊢ (((𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻) ∧ 𝐴 = (𝑥 +ℎ (𝐴 −ℎ 𝑥))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
24 | 18, 21, 23 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
25 | df-hba 30998 | . . . 4 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
26 | eqid 2735 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
27 | 26 | hhvs 31199 | . . . 4 ⊢ −ℎ = ( −𝑣 ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
28 | 26 | hhnm 31200 | . . . 4 ⊢ normℎ = (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
29 | eqid 2735 | . . . . 5 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
30 | 29, 15 | hhssba 31300 | . . . 4 ⊢ 𝐻 = (BaseSet‘〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉) |
31 | 26 | hhph 31207 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ CPreHilOLD |
32 | 31 | a1i 11 | . . . 4 ⊢ (𝜑 → 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ CPreHilOLD) |
33 | 26, 29 | hhsst 31295 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
34 | 15, 33 | ax-mp 5 | . . . . . 6 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
35 | 29, 3 | hhssbnOLD 31308 | . . . . . 6 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ CBan |
36 | elin 3979 | . . . . . 6 ⊢ (〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ ((SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∩ CBan) ↔ (〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∧ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ CBan)) | |
37 | 34, 35, 36 | mpbir2an 711 | . . . . 5 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ ((SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∩ CBan) |
38 | 37 | a1i 11 | . . . 4 ⊢ (𝜑 → 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ ((SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∩ CBan)) |
39 | 25, 27, 28, 30, 32, 38, 1 | minveco 30913 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) |
40 | reurex 3382 | . . 3 ⊢ (∃!𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)) → ∃𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) | |
41 | 39, 40 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) |
42 | 24, 41 | reximddv 3169 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∃!wreu 3376 ∩ cin 3962 〈cop 4637 class class class wbr 5148 × cxp 5687 ↾ cres 5691 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 0cc0 11153 1c1 11154 + caddc 11156 ≤ cle 11294 / cdiv 11918 SubSpcss 30750 CPreHilOLDccphlo 30841 CBanccbn 30891 ℋchba 30948 +ℎ cva 30949 ·ℎ csm 30950 ·ih csp 30951 normℎcno 30952 −ℎ cmv 30954 Sℋ csh 30957 Cℋ cch 30958 ⊥cort 30959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cc 10473 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 ax-hilex 31028 ax-hfvadd 31029 ax-hvcom 31030 ax-hvass 31031 ax-hv0cl 31032 ax-hvaddid 31033 ax-hfvmul 31034 ax-hvmulid 31035 ax-hvmulass 31036 ax-hvdistr1 31037 ax-hvdistr2 31038 ax-hvmul0 31039 ax-hfi 31108 ax-his1 31111 ax-his2 31112 ax-his3 31113 ax-his4 31114 ax-hcompl 31231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ico 13390 df-icc 13391 df-fz 13545 df-fl 13829 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-rlim 15522 df-rest 17469 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-top 22916 df-topon 22933 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lm 23253 df-haus 23339 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-cfil 25303 df-cau 25304 df-cmet 25305 df-grpo 30522 df-gid 30523 df-ginv 30524 df-gdiv 30525 df-ablo 30574 df-vc 30588 df-nv 30621 df-va 30624 df-ba 30625 df-sm 30626 df-0v 30627 df-vs 30628 df-nmcv 30629 df-ims 30630 df-ssp 30751 df-ph 30842 df-cbn 30892 df-hnorm 30997 df-hba 30998 df-hvsub 31000 df-hlim 31001 df-hcau 31002 df-sh 31236 df-ch 31250 df-oc 31281 df-ch0 31282 |
This theorem is referenced by: pjhth 31422 omlsii 31432 |
Copyright terms: Public domain | W3C validator |