![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjhthlem2 | Structured version Visualization version GIF version |
Description: Lemma for pjhth 30335. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjhth.1 | ⊢ 𝐻 ∈ Cℋ |
pjhth.2 | ⊢ (𝜑 → 𝐴 ∈ ℋ) |
Ref | Expression |
---|---|
pjhthlem2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjhth.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℋ) | |
2 | 1 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → 𝐴 ∈ ℋ) |
3 | pjhth.1 | . . . . . . 7 ⊢ 𝐻 ∈ Cℋ | |
4 | 3 | cheli 30174 | . . . . . 6 ⊢ (𝑥 ∈ 𝐻 → 𝑥 ∈ ℋ) |
5 | 4 | ad2antrl 726 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → 𝑥 ∈ ℋ) |
6 | hvsubcl 29959 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 −ℎ 𝑥) ∈ ℋ) | |
7 | 2, 5, 6 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → (𝐴 −ℎ 𝑥) ∈ ℋ) |
8 | 2 | adantr 481 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → 𝐴 ∈ ℋ) |
9 | simplrl 775 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻) | |
10 | simpr 485 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → 𝑦 ∈ 𝐻) | |
11 | simplrr 776 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) | |
12 | eqid 2736 | . . . . . 6 ⊢ (((𝐴 −ℎ 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1)) = (((𝐴 −ℎ 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1)) | |
13 | 3, 8, 9, 10, 11, 12 | pjhthlem1 30333 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) ∧ 𝑦 ∈ 𝐻) → ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0) |
14 | 13 | ralrimiva 3143 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → ∀𝑦 ∈ 𝐻 ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0) |
15 | 3 | chshii 30169 | . . . . 5 ⊢ 𝐻 ∈ Sℋ |
16 | shocel 30224 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → ((𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 −ℎ 𝑥) ∈ ℋ ∧ ∀𝑦 ∈ 𝐻 ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0))) | |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ ((𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 −ℎ 𝑥) ∈ ℋ ∧ ∀𝑦 ∈ 𝐻 ((𝐴 −ℎ 𝑥) ·ih 𝑦) = 0)) |
18 | 7, 14, 17 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → (𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻)) |
19 | hvpncan3 29984 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑥 +ℎ (𝐴 −ℎ 𝑥)) = 𝐴) | |
20 | 5, 2, 19 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → (𝑥 +ℎ (𝐴 −ℎ 𝑥)) = 𝐴) |
21 | 20 | eqcomd 2742 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → 𝐴 = (𝑥 +ℎ (𝐴 −ℎ 𝑥))) |
22 | oveq2 7365 | . . . 4 ⊢ (𝑦 = (𝐴 −ℎ 𝑥) → (𝑥 +ℎ 𝑦) = (𝑥 +ℎ (𝐴 −ℎ 𝑥))) | |
23 | 22 | rspceeqv 3595 | . . 3 ⊢ (((𝐴 −ℎ 𝑥) ∈ (⊥‘𝐻) ∧ 𝐴 = (𝑥 +ℎ (𝐴 −ℎ 𝑥))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
24 | 18, 21, 23 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
25 | df-hba 29911 | . . . 4 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
26 | eqid 2736 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
27 | 26 | hhvs 30112 | . . . 4 ⊢ −ℎ = ( −𝑣 ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
28 | 26 | hhnm 30113 | . . . 4 ⊢ normℎ = (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
29 | eqid 2736 | . . . . 5 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
30 | 29, 15 | hhssba 30213 | . . . 4 ⊢ 𝐻 = (BaseSet‘〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉) |
31 | 26 | hhph 30120 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ CPreHilOLD |
32 | 31 | a1i 11 | . . . 4 ⊢ (𝜑 → 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ CPreHilOLD) |
33 | 26, 29 | hhsst 30208 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
34 | 15, 33 | ax-mp 5 | . . . . . 6 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
35 | 29, 3 | hhssbnOLD 30221 | . . . . . 6 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ CBan |
36 | elin 3926 | . . . . . 6 ⊢ (〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ ((SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∩ CBan) ↔ (〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∧ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ CBan)) | |
37 | 34, 35, 36 | mpbir2an 709 | . . . . 5 ⊢ 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ ((SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∩ CBan) |
38 | 37 | a1i 11 | . . . 4 ⊢ (𝜑 → 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ∈ ((SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∩ CBan)) |
39 | 25, 27, 28, 30, 32, 38, 1 | minveco 29826 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) |
40 | reurex 3357 | . . 3 ⊢ (∃!𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧)) → ∃𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) | |
41 | 39, 40 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∀𝑧 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝑥)) ≤ (normℎ‘(𝐴 −ℎ 𝑧))) |
42 | 24, 41 | reximddv 3168 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ∃wrex 3073 ∃!wreu 3351 ∩ cin 3909 〈cop 4592 class class class wbr 5105 × cxp 5631 ↾ cres 5635 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 0cc0 11051 1c1 11052 + caddc 11054 ≤ cle 11190 / cdiv 11812 SubSpcss 29663 CPreHilOLDccphlo 29754 CBanccbn 29804 ℋchba 29861 +ℎ cva 29862 ·ℎ csm 29863 ·ih csp 29864 normℎcno 29865 −ℎ cmv 29867 Sℋ csh 29870 Cℋ cch 29871 ⊥cort 29872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cc 10371 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 ax-hilex 29941 ax-hfvadd 29942 ax-hvcom 29943 ax-hvass 29944 ax-hv0cl 29945 ax-hvaddid 29946 ax-hfvmul 29947 ax-hvmulid 29948 ax-hvmulass 29949 ax-hvdistr1 29950 ax-hvdistr2 29951 ax-hvmul0 29952 ax-hfi 30021 ax-his1 30024 ax-his2 30025 ax-his3 30026 ax-his4 30027 ax-hcompl 30144 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-oadd 8416 df-omul 8417 df-er 8648 df-map 8767 df-pm 8768 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-acn 9878 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-n0 12414 df-z 12500 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ico 13270 df-icc 13271 df-fz 13425 df-fl 13697 df-seq 13907 df-exp 13968 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-rlim 15371 df-rest 17304 df-topgen 17325 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-top 22243 df-topon 22260 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lm 22580 df-haus 22666 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-cfil 24619 df-cau 24620 df-cmet 24621 df-grpo 29435 df-gid 29436 df-ginv 29437 df-gdiv 29438 df-ablo 29487 df-vc 29501 df-nv 29534 df-va 29537 df-ba 29538 df-sm 29539 df-0v 29540 df-vs 29541 df-nmcv 29542 df-ims 29543 df-ssp 29664 df-ph 29755 df-cbn 29805 df-hnorm 29910 df-hba 29911 df-hvsub 29913 df-hlim 29914 df-hcau 29915 df-sh 30149 df-ch 30163 df-oc 30194 df-ch0 30195 |
This theorem is referenced by: pjhth 30335 omlsii 30345 |
Copyright terms: Public domain | W3C validator |