HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhthlem2 Structured version   Visualization version   GIF version

Theorem pjhthlem2 29886
Description: Lemma for pjhth 29887. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjhth.1 𝐻C
pjhth.2 (𝜑𝐴 ∈ ℋ)
Assertion
Ref Expression
pjhthlem2 (𝜑 → ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦

Proof of Theorem pjhthlem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pjhth.2 . . . . . 6 (𝜑𝐴 ∈ ℋ)
21adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → 𝐴 ∈ ℋ)
3 pjhth.1 . . . . . . 7 𝐻C
43cheli 29726 . . . . . 6 (𝑥𝐻𝑥 ∈ ℋ)
54ad2antrl 725 . . . . 5 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → 𝑥 ∈ ℋ)
6 hvsubcl 29511 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 𝑥) ∈ ℋ)
72, 5, 6syl2anc 584 . . . 4 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → (𝐴 𝑥) ∈ ℋ)
82adantr 481 . . . . . 6 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → 𝐴 ∈ ℋ)
9 simplrl 774 . . . . . 6 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → 𝑥𝐻)
10 simpr 485 . . . . . 6 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → 𝑦𝐻)
11 simplrr 775 . . . . . 6 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))
12 eqid 2736 . . . . . 6 (((𝐴 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1)) = (((𝐴 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1))
133, 8, 9, 10, 11, 12pjhthlem1 29885 . . . . 5 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → ((𝐴 𝑥) ·ih 𝑦) = 0)
1413ralrimiva 3139 . . . 4 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → ∀𝑦𝐻 ((𝐴 𝑥) ·ih 𝑦) = 0)
153chshii 29721 . . . . 5 𝐻S
16 shocel 29776 . . . . 5 (𝐻S → ((𝐴 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 𝑥) ∈ ℋ ∧ ∀𝑦𝐻 ((𝐴 𝑥) ·ih 𝑦) = 0)))
1715, 16ax-mp 5 . . . 4 ((𝐴 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 𝑥) ∈ ℋ ∧ ∀𝑦𝐻 ((𝐴 𝑥) ·ih 𝑦) = 0))
187, 14, 17sylanbrc 583 . . 3 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → (𝐴 𝑥) ∈ (⊥‘𝐻))
19 hvpncan3 29536 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑥 + (𝐴 𝑥)) = 𝐴)
205, 2, 19syl2anc 584 . . . 4 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → (𝑥 + (𝐴 𝑥)) = 𝐴)
2120eqcomd 2742 . . 3 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → 𝐴 = (𝑥 + (𝐴 𝑥)))
22 oveq2 7324 . . . 4 (𝑦 = (𝐴 𝑥) → (𝑥 + 𝑦) = (𝑥 + (𝐴 𝑥)))
2322rspceeqv 3583 . . 3 (((𝐴 𝑥) ∈ (⊥‘𝐻) ∧ 𝐴 = (𝑥 + (𝐴 𝑥))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
2418, 21, 23syl2anc 584 . 2 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
25 df-hba 29463 . . . 4 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
26 eqid 2736 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
2726hhvs 29664 . . . 4 = ( −𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
2826hhnm 29665 . . . 4 norm = (normCV‘⟨⟨ + , · ⟩, norm⟩)
29 eqid 2736 . . . . 5 ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
3029, 15hhssba 29765 . . . 4 𝐻 = (BaseSet‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)
3126hhph 29672 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD
3231a1i 11 . . . 4 (𝜑 → ⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD)
3326, 29hhsst 29760 . . . . . . 7 (𝐻S → ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ (SubSp‘⟨⟨ + , · ⟩, norm⟩))
3415, 33ax-mp 5 . . . . . 6 ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ (SubSp‘⟨⟨ + , · ⟩, norm⟩)
3529, 3hhssbnOLD 29773 . . . . . 6 ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ CBan
36 elin 3912 . . . . . 6 (⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ ((SubSp‘⟨⟨ + , · ⟩, norm⟩) ∩ CBan) ↔ (⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ (SubSp‘⟨⟨ + , · ⟩, norm⟩) ∧ ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ CBan))
3734, 35, 36mpbir2an 708 . . . . 5 ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ ((SubSp‘⟨⟨ + , · ⟩, norm⟩) ∩ CBan)
3837a1i 11 . . . 4 (𝜑 → ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ ((SubSp‘⟨⟨ + , · ⟩, norm⟩) ∩ CBan))
3925, 27, 28, 30, 32, 38, 1minveco 29378 . . 3 (𝜑 → ∃!𝑥𝐻𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))
40 reurex 3353 . . 3 (∃!𝑥𝐻𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)) → ∃𝑥𝐻𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))
4139, 40syl 17 . 2 (𝜑 → ∃𝑥𝐻𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))
4224, 41reximddv 3164 1 (𝜑 → ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3061  wrex 3070  ∃!wreu 3347  cin 3895  cop 4576   class class class wbr 5086   × cxp 5605  cres 5609  cfv 6465  (class class class)co 7316  cc 10948  0cc0 10950  1c1 10951   + caddc 10953  cle 11089   / cdiv 11711  SubSpcss 29215  CPreHilOLDccphlo 29306  CBanccbn 29356  chba 29413   + cva 29414   · csm 29415   ·ih csp 29416  normcno 29417   cmv 29419   S csh 29422   C cch 29423  cort 29424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-inf2 9476  ax-cc 10270  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027  ax-pre-sup 11028  ax-addf 11029  ax-mulf 11030  ax-hilex 29493  ax-hfvadd 29494  ax-hvcom 29495  ax-hvass 29496  ax-hv0cl 29497  ax-hvaddid 29498  ax-hfvmul 29499  ax-hvmulid 29500  ax-hvmulass 29501  ax-hvdistr1 29502  ax-hvdistr2 29503  ax-hvmul0 29504  ax-hfi 29573  ax-his1 29576  ax-his2 29577  ax-his3 29578  ax-his4 29579  ax-hcompl 29696
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-oadd 8349  df-omul 8350  df-er 8547  df-map 8666  df-pm 8667  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-fi 9246  df-sup 9277  df-inf 9278  df-oi 9345  df-card 9774  df-acn 9777  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-nn 12053  df-2 12115  df-3 12116  df-4 12117  df-n0 12313  df-z 12399  df-uz 12662  df-q 12768  df-rp 12810  df-xneg 12927  df-xadd 12928  df-xmul 12929  df-ico 13164  df-icc 13165  df-fz 13319  df-fl 13591  df-seq 13801  df-exp 13862  df-cj 14886  df-re 14887  df-im 14888  df-sqrt 15022  df-abs 15023  df-clim 15273  df-rlim 15274  df-rest 17207  df-topgen 17228  df-psmet 20669  df-xmet 20670  df-met 20671  df-bl 20672  df-mopn 20673  df-fbas 20674  df-fg 20675  df-top 22123  df-topon 22140  df-bases 22176  df-cld 22250  df-ntr 22251  df-cls 22252  df-nei 22329  df-lm 22460  df-haus 22546  df-fil 23077  df-fm 23169  df-flim 23170  df-flf 23171  df-cfil 24499  df-cau 24500  df-cmet 24501  df-grpo 28987  df-gid 28988  df-ginv 28989  df-gdiv 28990  df-ablo 29039  df-vc 29053  df-nv 29086  df-va 29089  df-ba 29090  df-sm 29091  df-0v 29092  df-vs 29093  df-nmcv 29094  df-ims 29095  df-ssp 29216  df-ph 29307  df-cbn 29357  df-hnorm 29462  df-hba 29463  df-hvsub 29465  df-hlim 29466  df-hcau 29467  df-sh 29701  df-ch 29715  df-oc 29746  df-ch0 29747
This theorem is referenced by:  pjhth  29887  omlsii  29897
  Copyright terms: Public domain W3C validator