HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhthlem2 Structured version   Visualization version   GIF version

Theorem pjhthlem2 29154
Description: Lemma for pjhth 29155. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjhth.1 𝐻C
pjhth.2 (𝜑𝐴 ∈ ℋ)
Assertion
Ref Expression
pjhthlem2 (𝜑 → ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦

Proof of Theorem pjhthlem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pjhth.2 . . . . . 6 (𝜑𝐴 ∈ ℋ)
21adantr 484 . . . . 5 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → 𝐴 ∈ ℋ)
3 pjhth.1 . . . . . . 7 𝐻C
43cheli 28994 . . . . . 6 (𝑥𝐻𝑥 ∈ ℋ)
54ad2antrl 727 . . . . 5 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → 𝑥 ∈ ℋ)
6 hvsubcl 28779 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 𝑥) ∈ ℋ)
72, 5, 6syl2anc 587 . . . 4 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → (𝐴 𝑥) ∈ ℋ)
82adantr 484 . . . . . 6 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → 𝐴 ∈ ℋ)
9 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → 𝑥𝐻)
10 simpr 488 . . . . . 6 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → 𝑦𝐻)
11 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))
12 eqid 2821 . . . . . 6 (((𝐴 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1)) = (((𝐴 𝑥) ·ih 𝑦) / ((𝑦 ·ih 𝑦) + 1))
133, 8, 9, 10, 11, 12pjhthlem1 29153 . . . . 5 (((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) ∧ 𝑦𝐻) → ((𝐴 𝑥) ·ih 𝑦) = 0)
1413ralrimiva 3170 . . . 4 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → ∀𝑦𝐻 ((𝐴 𝑥) ·ih 𝑦) = 0)
153chshii 28989 . . . . 5 𝐻S
16 shocel 29044 . . . . 5 (𝐻S → ((𝐴 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 𝑥) ∈ ℋ ∧ ∀𝑦𝐻 ((𝐴 𝑥) ·ih 𝑦) = 0)))
1715, 16ax-mp 5 . . . 4 ((𝐴 𝑥) ∈ (⊥‘𝐻) ↔ ((𝐴 𝑥) ∈ ℋ ∧ ∀𝑦𝐻 ((𝐴 𝑥) ·ih 𝑦) = 0))
187, 14, 17sylanbrc 586 . . 3 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → (𝐴 𝑥) ∈ (⊥‘𝐻))
19 hvpncan3 28804 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑥 + (𝐴 𝑥)) = 𝐴)
205, 2, 19syl2anc 587 . . . 4 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → (𝑥 + (𝐴 𝑥)) = 𝐴)
2120eqcomd 2827 . . 3 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → 𝐴 = (𝑥 + (𝐴 𝑥)))
22 oveq2 7138 . . . 4 (𝑦 = (𝐴 𝑥) → (𝑥 + 𝑦) = (𝑥 + (𝐴 𝑥)))
2322rspceeqv 3615 . . 3 (((𝐴 𝑥) ∈ (⊥‘𝐻) ∧ 𝐴 = (𝑥 + (𝐴 𝑥))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
2418, 21, 23syl2anc 587 . 2 ((𝜑 ∧ (𝑥𝐻 ∧ ∀𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
25 df-hba 28731 . . . 4 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
26 eqid 2821 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
2726hhvs 28932 . . . 4 = ( −𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
2826hhnm 28933 . . . 4 norm = (normCV‘⟨⟨ + , · ⟩, norm⟩)
29 eqid 2821 . . . . 5 ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
3029, 15hhssba 29033 . . . 4 𝐻 = (BaseSet‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)
3126hhph 28940 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD
3231a1i 11 . . . 4 (𝜑 → ⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD)
3326, 29hhsst 29028 . . . . . . 7 (𝐻S → ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ (SubSp‘⟨⟨ + , · ⟩, norm⟩))
3415, 33ax-mp 5 . . . . . 6 ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ (SubSp‘⟨⟨ + , · ⟩, norm⟩)
3529, 3hhssbnOLD 29041 . . . . . 6 ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ CBan
36 elin 3926 . . . . . 6 (⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ ((SubSp‘⟨⟨ + , · ⟩, norm⟩) ∩ CBan) ↔ (⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ (SubSp‘⟨⟨ + , · ⟩, norm⟩) ∧ ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ CBan))
3734, 35, 36mpbir2an 710 . . . . 5 ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ ((SubSp‘⟨⟨ + , · ⟩, norm⟩) ∩ CBan)
3837a1i 11 . . . 4 (𝜑 → ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ ∈ ((SubSp‘⟨⟨ + , · ⟩, norm⟩) ∩ CBan))
3925, 27, 28, 30, 32, 38, 1minveco 28646 . . 3 (𝜑 → ∃!𝑥𝐻𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))
40 reurex 3408 . . 3 (∃!𝑥𝐻𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)) → ∃𝑥𝐻𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))
4139, 40syl 17 . 2 (𝜑 → ∃𝑥𝐻𝑧𝐻 (norm‘(𝐴 𝑥)) ≤ (norm‘(𝐴 𝑧)))
4224, 41reximddv 3261 1 (𝜑 → ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3126  wrex 3127  ∃!wreu 3128  cin 3909  cop 4546   class class class wbr 5039   × cxp 5526  cres 5530  cfv 6328  (class class class)co 7130  cc 10512  0cc0 10514  1c1 10515   + caddc 10517  cle 10653   / cdiv 11274  SubSpcss 28483  CPreHilOLDccphlo 28574  CBanccbn 28624  chba 28681   + cva 28682   · csm 28683   ·ih csp 28684  normcno 28685   cmv 28687   S csh 28690   C cch 28691  cort 28692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cc 9834  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594  ax-hilex 28761  ax-hfvadd 28762  ax-hvcom 28763  ax-hvass 28764  ax-hv0cl 28765  ax-hvaddid 28766  ax-hfvmul 28767  ax-hvmulid 28768  ax-hvmulass 28769  ax-hvdistr1 28770  ax-hvdistr2 28771  ax-hvmul0 28772  ax-hfi 28841  ax-his1 28844  ax-his2 28845  ax-his3 28846  ax-his4 28847  ax-hcompl 28964
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-omul 8082  df-er 8264  df-map 8383  df-pm 8384  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fi 8851  df-sup 8882  df-inf 8883  df-oi 8950  df-card 9344  df-acn 9347  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-n0 11876  df-z 11960  df-uz 12222  df-q 12327  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-ico 12722  df-icc 12723  df-fz 12876  df-fl 13145  df-seq 13353  df-exp 13414  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-clim 14824  df-rlim 14825  df-rest 16675  df-topgen 16696  df-psmet 20513  df-xmet 20514  df-met 20515  df-bl 20516  df-mopn 20517  df-fbas 20518  df-fg 20519  df-top 21478  df-topon 21495  df-bases 21530  df-cld 21603  df-ntr 21604  df-cls 21605  df-nei 21682  df-lm 21813  df-haus 21899  df-fil 22430  df-fm 22522  df-flim 22523  df-flf 22524  df-cfil 23838  df-cau 23839  df-cmet 23840  df-grpo 28255  df-gid 28256  df-ginv 28257  df-gdiv 28258  df-ablo 28307  df-vc 28321  df-nv 28354  df-va 28357  df-ba 28358  df-sm 28359  df-0v 28360  df-vs 28361  df-nmcv 28362  df-ims 28363  df-ssp 28484  df-ph 28575  df-cbn 28625  df-hnorm 28730  df-hba 28731  df-hvsub 28733  df-hlim 28734  df-hcau 28735  df-sh 28969  df-ch 28983  df-oc 29014  df-ch0 29015
This theorem is referenced by:  pjhth  29155  omlsii  29165
  Copyright terms: Public domain W3C validator