HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhvass-zf Structured version   Visualization version   GIF version

Theorem axhvass-zf 29332
Description: Derive Axiom ax-hvass 29350 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhvass-zf ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Proof of Theorem axhvass-zf
StepHypRef Expression
1 axhil.2 . 2 𝑈 ∈ CHilOLD
2 df-hba 29317 . . . 4 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
3 axhil.1 . . . . 5 𝑈 = ⟨⟨ + , · ⟩, norm
43fveq2i 6770 . . . 4 (BaseSet‘𝑈) = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
52, 4eqtr4i 2769 . . 3 ℋ = (BaseSet‘𝑈)
61hlnvi 29240 . . . 4 𝑈 ∈ NrmCVec
73, 6h2hva 29322 . . 3 + = ( +𝑣𝑈)
85, 7hlass 29249 . 2 ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
91, 8mpan 687 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  cop 4568  cfv 6427  (class class class)co 7268  BaseSetcba 28934  CHilOLDchlo 29233  chba 29267   + cva 29268   · csm 29269  normcno 29271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pr 5351  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-ov 7271  df-oprab 7272  df-1st 7821  df-2nd 7822  df-grpo 28841  df-ablo 28893  df-vc 28907  df-nv 28940  df-va 28943  df-ba 28944  df-sm 28945  df-0v 28946  df-nmcv 28948  df-cbn 29211  df-hlo 29234  df-hba 29317
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator