![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmopsetretHIL | Structured version Visualization version GIF version |
Description: The set in the supremum of the operator norm definition df-nmop 31688 is a set of reals. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmopsetretHIL | β’ (π: ββΆ β β {π₯ β£ βπ¦ β β ((normββπ¦) β€ 1 β§ π₯ = (normββ(πβπ¦)))} β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 β’ β¨β¨ +β , Β·β β©, normββ© = β¨β¨ +β , Β·β β©, normββ© | |
2 | 1 | hhnv 31014 | . 2 β’ β¨β¨ +β , Β·β β©, normββ© β NrmCVec |
3 | df-hba 30818 | . . 3 β’ β = (BaseSetββ¨β¨ +β , Β·β β©, normββ©) | |
4 | 1 | hhnm 31020 | . . 3 β’ normβ = (normCVββ¨β¨ +β , Β·β β©, normββ©) |
5 | 3, 4 | nmosetre 30613 | . 2 β’ ((β¨β¨ +β , Β·β β©, normββ© β NrmCVec β§ π: ββΆ β) β {π₯ β£ βπ¦ β β ((normββπ¦) β€ 1 β§ π₯ = (normββ(πβπ¦)))} β β) |
6 | 2, 5 | mpan 688 | 1 β’ (π: ββΆ β β {π₯ β£ βπ¦ β β ((normββπ¦) β€ 1 β§ π₯ = (normββ(πβπ¦)))} β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 {cab 2702 βwrex 3060 β wss 3941 β¨cop 4631 class class class wbr 5144 βΆwf 6539 βcfv 6543 βcr 11132 1c1 11134 β€ cle 11274 NrmCVeccnv 30433 βchba 30768 +β cva 30769 Β·β csm 30770 normβcno 30772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 ax-hilex 30848 ax-hfvadd 30849 ax-hvcom 30850 ax-hvass 30851 ax-hv0cl 30852 ax-hvaddid 30853 ax-hfvmul 30854 ax-hvmulid 30855 ax-hvmulass 30856 ax-hvdistr1 30857 ax-hvdistr2 30858 ax-hvmul0 30859 ax-hfi 30928 ax-his1 30931 ax-his2 30932 ax-his3 30933 ax-his4 30934 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9460 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-n0 12498 df-z 12584 df-uz 12848 df-rp 13002 df-seq 13994 df-exp 14054 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-grpo 30342 df-gid 30343 df-ablo 30394 df-vc 30408 df-nv 30441 df-va 30444 df-ba 30445 df-sm 30446 df-0v 30447 df-nmcv 30449 df-hnorm 30817 df-hba 30818 df-hvsub 30820 |
This theorem is referenced by: nmopxr 31715 nmoprepnf 31716 nmoplb 31756 nmlnop0iALT 31844 nmopun 31863 pjnmopi 31997 |
Copyright terms: Public domain | W3C validator |