Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > nmopsetretHIL | Structured version Visualization version GIF version |
Description: The set in the supremum of the operator norm definition df-nmop 30555 is a set of reals. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmopsetretHIL | ⊢ (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
2 | 1 | hhnv 29881 | . 2 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
3 | df-hba 29685 | . . 3 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
4 | 1 | hhnm 29887 | . . 3 ⊢ normℎ = (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
5 | 3, 4 | nmosetre 29480 | . 2 ⊢ ((〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec ∧ 𝑇: ℋ⟶ ℋ) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) |
6 | 2, 5 | mpan 688 | 1 ⊢ (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 {cab 2714 ∃wrex 3071 ⊆ wss 3905 〈cop 4587 class class class wbr 5100 ⟶wf 6484 ‘cfv 6488 ℝcr 10980 1c1 10982 ≤ cle 11120 NrmCVeccnv 29300 ℋchba 29635 +ℎ cva 29636 ·ℎ csm 29637 normℎcno 29639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 ax-pre-sup 11059 ax-hilex 29715 ax-hfvadd 29716 ax-hvcom 29717 ax-hvass 29718 ax-hv0cl 29719 ax-hvaddid 29720 ax-hfvmul 29721 ax-hvmulid 29722 ax-hvmulass 29723 ax-hvdistr1 29724 ax-hvdistr2 29725 ax-hvmul0 29726 ax-hfi 29795 ax-his1 29798 ax-his2 29799 ax-his3 29800 ax-his4 29801 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-1st 7908 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-sup 9308 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-div 11743 df-nn 12084 df-2 12146 df-3 12147 df-4 12148 df-n0 12344 df-z 12430 df-uz 12693 df-rp 12841 df-seq 13832 df-exp 13893 df-cj 14914 df-re 14915 df-im 14916 df-sqrt 15050 df-abs 15051 df-grpo 29209 df-gid 29210 df-ablo 29261 df-vc 29275 df-nv 29308 df-va 29311 df-ba 29312 df-sm 29313 df-0v 29314 df-nmcv 29316 df-hnorm 29684 df-hba 29685 df-hvsub 29687 |
This theorem is referenced by: nmopxr 30582 nmoprepnf 30583 nmoplb 30623 nmlnop0iALT 30711 nmopun 30730 pjnmopi 30864 |
Copyright terms: Public domain | W3C validator |