| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmopsetretHIL | Structured version Visualization version GIF version | ||
| Description: The set in the supremum of the operator norm definition df-nmop 31786 is a set of reals. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmopsetretHIL | ⊢ (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 2 | 1 | hhnv 31112 | . 2 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
| 3 | df-hba 30916 | . . 3 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 4 | 1 | hhnm 31118 | . . 3 ⊢ normℎ = (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 5 | 3, 4 | nmosetre 30711 | . 2 ⊢ ((〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec ∧ 𝑇: ℋ⟶ ℋ) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) |
| 6 | 2, 5 | mpan 690 | 1 ⊢ (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 ∃wrex 3059 ⊆ wss 3931 〈cop 4612 class class class wbr 5123 ⟶wf 6537 ‘cfv 6541 ℝcr 11136 1c1 11138 ≤ cle 11278 NrmCVeccnv 30531 ℋchba 30866 +ℎ cva 30867 ·ℎ csm 30868 normℎcno 30870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-hilex 30946 ax-hfvadd 30947 ax-hvcom 30948 ax-hvass 30949 ax-hv0cl 30950 ax-hvaddid 30951 ax-hfvmul 30952 ax-hvmulid 30953 ax-hvmulass 30954 ax-hvdistr1 30955 ax-hvdistr2 30956 ax-hvmul0 30957 ax-hfi 31026 ax-his1 31029 ax-his2 31030 ax-his3 31031 ax-his4 31032 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-seq 14025 df-exp 14085 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-grpo 30440 df-gid 30441 df-ablo 30492 df-vc 30506 df-nv 30539 df-va 30542 df-ba 30543 df-sm 30544 df-0v 30545 df-nmcv 30547 df-hnorm 30915 df-hba 30916 df-hvsub 30918 |
| This theorem is referenced by: nmopxr 31813 nmoprepnf 31814 nmoplb 31854 nmlnop0iALT 31942 nmopun 31961 pjnmopi 32095 |
| Copyright terms: Public domain | W3C validator |