HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopsetretHIL Structured version   Visualization version   GIF version

Theorem nmopsetretHIL 31661
Description: The set in the supremum of the operator norm definition df-nmop 31636 is a set of reals. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmopsetretHIL (𝑇: β„‹βŸΆ β„‹ β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (normβ„Žβ€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ)
Distinct variable group:   π‘₯,𝑦,𝑇

Proof of Theorem nmopsetretHIL
StepHypRef Expression
1 eqid 2727 . . 3 ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ© = ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©
21hhnv 30962 . 2 ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ© ∈ NrmCVec
3 df-hba 30766 . . 3 β„‹ = (BaseSetβ€˜βŸ¨βŸ¨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©)
41hhnm 30968 . . 3 normβ„Ž = (normCVβ€˜βŸ¨βŸ¨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©)
53, 4nmosetre 30561 . 2 ((⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ© ∈ NrmCVec ∧ 𝑇: β„‹βŸΆ β„‹) β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (normβ„Žβ€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ)
62, 5mpan 689 1 (𝑇: β„‹βŸΆ β„‹ β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (normβ„Žβ€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099  {cab 2704  βˆƒwrex 3065   βŠ† wss 3944  βŸ¨cop 4630   class class class wbr 5142  βŸΆwf 6538  β€˜cfv 6542  β„cr 11129  1c1 11131   ≀ cle 11271  NrmCVeccnv 30381   β„‹chba 30716   +β„Ž cva 30717   Β·β„Ž csm 30718  normβ„Žcno 30720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208  ax-hilex 30796  ax-hfvadd 30797  ax-hvcom 30798  ax-hvass 30799  ax-hv0cl 30800  ax-hvaddid 30801  ax-hfvmul 30802  ax-hvmulid 30803  ax-hvmulass 30804  ax-hvdistr1 30805  ax-hvdistr2 30806  ax-hvmul0 30807  ax-hfi 30876  ax-his1 30879  ax-his2 30880  ax-his3 30881  ax-his4 30882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-sup 9457  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-seq 13991  df-exp 14051  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-grpo 30290  df-gid 30291  df-ablo 30342  df-vc 30356  df-nv 30389  df-va 30392  df-ba 30393  df-sm 30394  df-0v 30395  df-nmcv 30397  df-hnorm 30765  df-hba 30766  df-hvsub 30768
This theorem is referenced by:  nmopxr  31663  nmoprepnf  31664  nmoplb  31704  nmlnop0iALT  31792  nmopun  31811  pjnmopi  31945
  Copyright terms: Public domain W3C validator