![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > axhvmulass-zf | Structured version Visualization version GIF version |
Description: Derive Axiom ax-hvmulass 30524 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axhil.1 | β’ π = β¨β¨ +β , Β·β β©, normββ© |
axhil.2 | β’ π β CHilOLD |
Ref | Expression |
---|---|
axhvmulass-zf | β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β ((π΄ Β· π΅) Β·β πΆ) = (π΄ Β·β (π΅ Β·β πΆ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axhil.2 | . 2 β’ π β CHilOLD | |
2 | df-hba 30486 | . . . 4 β’ β = (BaseSetββ¨β¨ +β , Β·β β©, normββ©) | |
3 | axhil.1 | . . . . 5 β’ π = β¨β¨ +β , Β·β β©, normββ© | |
4 | 3 | fveq2i 6895 | . . . 4 β’ (BaseSetβπ) = (BaseSetββ¨β¨ +β , Β·β β©, normββ©) |
5 | 2, 4 | eqtr4i 2762 | . . 3 β’ β = (BaseSetβπ) |
6 | 1 | hlnvi 30409 | . . . 4 β’ π β NrmCVec |
7 | 3, 6 | h2hsm 30492 | . . 3 β’ Β·β = ( Β·π OLD βπ) |
8 | 5, 7 | hlmulass 30423 | . 2 β’ ((π β CHilOLD β§ (π΄ β β β§ π΅ β β β§ πΆ β β)) β ((π΄ Β· π΅) Β·β πΆ) = (π΄ Β·β (π΅ Β·β πΆ))) |
9 | 1, 8 | mpan 687 | 1 β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β ((π΄ Β· π΅) Β·β πΆ) = (π΄ Β·β (π΅ Β·β πΆ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1086 = wceq 1540 β wcel 2105 β¨cop 4635 βcfv 6544 (class class class)co 7412 βcc 11111 Β· cmul 11118 BaseSetcba 30103 CHilOLDchlo 30402 βchba 30436 +β cva 30437 Β·β csm 30438 normβcno 30440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-1st 7978 df-2nd 7979 df-vc 30076 df-nv 30109 df-va 30112 df-ba 30113 df-sm 30114 df-0v 30115 df-nmcv 30117 df-cbn 30380 df-hlo 30403 df-hba 30486 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |