HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhis1-zf Structured version   Visualization version   GIF version

Theorem axhis1-zf 30832
Description: Derive Axiom ax-his1 30920 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 π‘ˆ = ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©
axhil.2 π‘ˆ ∈ CHilOLD
axhfi.1 Β·ih = (·𝑖OLDβ€˜π‘ˆ)
Assertion
Ref Expression
axhis1-zf ((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ (𝐴 Β·ih 𝐡) = (βˆ—β€˜(𝐡 Β·ih 𝐴)))

Proof of Theorem axhis1-zf
StepHypRef Expression
1 axhil.2 . 2 π‘ˆ ∈ CHilOLD
2 df-hba 30807 . . . 4 β„‹ = (BaseSetβ€˜βŸ¨βŸ¨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©)
3 axhil.1 . . . . 5 π‘ˆ = ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©
43fveq2i 6905 . . . 4 (BaseSetβ€˜π‘ˆ) = (BaseSetβ€˜βŸ¨βŸ¨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©)
52, 4eqtr4i 2759 . . 3 β„‹ = (BaseSetβ€˜π‘ˆ)
6 axhfi.1 . . 3 Β·ih = (·𝑖OLDβ€˜π‘ˆ)
75, 6hlipcj 30749 . 2 ((π‘ˆ ∈ CHilOLD ∧ 𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ (𝐴 Β·ih 𝐡) = (βˆ—β€˜(𝐡 Β·ih 𝐴)))
81, 7mp3an1 1444 1 ((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ (𝐴 Β·ih 𝐡) = (βˆ—β€˜(𝐡 Β·ih 𝐴)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βŸ¨cop 4638  β€˜cfv 6553  (class class class)co 7426  βˆ—ccj 15085  BaseSetcba 30424  Β·π‘–OLDcdip 30538  CHilOLDchlo 30723   β„‹chba 30757   +β„Ž cva 30758   Β·β„Ž csm 30759   Β·ih csp 30760  normβ„Žcno 30761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-inf2 9674  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225  ax-pre-sup 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-sup 9475  df-oi 9543  df-card 9972  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-div 11912  df-nn 12253  df-2 12315  df-3 12316  df-4 12317  df-n0 12513  df-z 12599  df-uz 12863  df-rp 13017  df-fz 13527  df-fzo 13670  df-seq 14009  df-exp 14069  df-hash 14332  df-cj 15088  df-re 15089  df-im 15090  df-sqrt 15224  df-abs 15225  df-clim 15474  df-sum 15675  df-grpo 30331  df-gid 30332  df-ginv 30333  df-ablo 30383  df-vc 30397  df-nv 30430  df-va 30433  df-ba 30434  df-sm 30435  df-0v 30436  df-nmcv 30438  df-dip 30539  df-cbn 30701  df-hlo 30724  df-hba 30807
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator