Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > axhvmulid-zf | Structured version Visualization version GIF version |
Description: Derive Axiom ax-hvmulid 29413 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
Ref | Expression |
---|---|
axhvmulid-zf | ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axhil.2 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
2 | df-hba 29376 | . . . 4 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
3 | axhil.1 | . . . . 5 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
4 | 3 | fveq2i 6807 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
5 | 2, 4 | eqtr4i 2767 | . . 3 ⊢ ℋ = (BaseSet‘𝑈) |
6 | 1 | hlnvi 29299 | . . . 4 ⊢ 𝑈 ∈ NrmCVec |
7 | 3, 6 | h2hsm 29382 | . . 3 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
8 | 5, 7 | hlmulid 29312 | . 2 ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ ℋ) → (1 ·ℎ 𝐴) = 𝐴) |
9 | 1, 8 | mpan 688 | 1 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 〈cop 4571 ‘cfv 6458 (class class class)co 7307 1c1 10918 BaseSetcba 28993 CHilOLDchlo 29292 ℋchba 29326 +ℎ cva 29327 ·ℎ csm 29328 normℎcno 29330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-1st 7863 df-2nd 7864 df-vc 28966 df-nv 28999 df-va 29002 df-ba 29003 df-sm 29004 df-0v 29005 df-nmcv 29007 df-cbn 29270 df-hlo 29293 df-hba 29376 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |