HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhvmulid-zf Structured version   Visualization version   GIF version

Theorem axhvmulid-zf 29395
Description: Derive Axiom ax-hvmulid 29413 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhvmulid-zf (𝐴 ∈ ℋ → (1 · 𝐴) = 𝐴)

Proof of Theorem axhvmulid-zf
StepHypRef Expression
1 axhil.2 . 2 𝑈 ∈ CHilOLD
2 df-hba 29376 . . . 4 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
3 axhil.1 . . . . 5 𝑈 = ⟨⟨ + , · ⟩, norm
43fveq2i 6807 . . . 4 (BaseSet‘𝑈) = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
52, 4eqtr4i 2767 . . 3 ℋ = (BaseSet‘𝑈)
61hlnvi 29299 . . . 4 𝑈 ∈ NrmCVec
73, 6h2hsm 29382 . . 3 · = ( ·𝑠OLD𝑈)
85, 7hlmulid 29312 . 2 ((𝑈 ∈ CHilOLD𝐴 ∈ ℋ) → (1 · 𝐴) = 𝐴)
91, 8mpan 688 1 (𝐴 ∈ ℋ → (1 · 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  cop 4571  cfv 6458  (class class class)co 7307  1c1 10918  BaseSetcba 28993  CHilOLDchlo 29292  chba 29326   + cva 29327   · csm 29328  normcno 29330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-1st 7863  df-2nd 7864  df-vc 28966  df-nv 28999  df-va 29002  df-ba 29003  df-sm 29004  df-0v 29005  df-nmcv 29007  df-cbn 29270  df-hlo 29293  df-hba 29376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator