![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > axhvmulid-zf | Structured version Visualization version GIF version |
Description: Derive Axiom ax-hvmulid 30790 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axhil.1 | β’ π = β¨β¨ +β , Β·β β©, normββ© |
axhil.2 | β’ π β CHilOLD |
Ref | Expression |
---|---|
axhvmulid-zf | β’ (π΄ β β β (1 Β·β π΄) = π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axhil.2 | . 2 β’ π β CHilOLD | |
2 | df-hba 30753 | . . . 4 β’ β = (BaseSetββ¨β¨ +β , Β·β β©, normββ©) | |
3 | axhil.1 | . . . . 5 β’ π = β¨β¨ +β , Β·β β©, normββ© | |
4 | 3 | fveq2i 6894 | . . . 4 β’ (BaseSetβπ) = (BaseSetββ¨β¨ +β , Β·β β©, normββ©) |
5 | 2, 4 | eqtr4i 2758 | . . 3 β’ β = (BaseSetβπ) |
6 | 1 | hlnvi 30676 | . . . 4 β’ π β NrmCVec |
7 | 3, 6 | h2hsm 30759 | . . 3 β’ Β·β = ( Β·π OLD βπ) |
8 | 5, 7 | hlmulid 30689 | . 2 β’ ((π β CHilOLD β§ π΄ β β) β (1 Β·β π΄) = π΄) |
9 | 1, 8 | mpan 689 | 1 β’ (π΄ β β β (1 Β·β π΄) = π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 β¨cop 4630 βcfv 6542 (class class class)co 7414 1c1 11125 BaseSetcba 30370 CHilOLDchlo 30669 βchba 30703 +β cva 30704 Β·β csm 30705 normβcno 30707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-1st 7985 df-2nd 7986 df-vc 30343 df-nv 30376 df-va 30379 df-ba 30380 df-sm 30381 df-0v 30382 df-nmcv 30384 df-cbn 30647 df-hlo 30670 df-hba 30753 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |