![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > axhcompl-zf | Structured version Visualization version GIF version |
Description: Derive Axiom ax-hcompl 31231 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
Ref | Expression |
---|---|
axhcompl-zf | ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axhil.2 | . . . . . 6 ⊢ 𝑈 ∈ CHilOLD | |
2 | simpl 482 | . . . . . 6 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ (Cau‘(IndMet‘𝑈))) | |
3 | eqid 2735 | . . . . . . 7 ⊢ (IndMet‘𝑈) = (IndMet‘𝑈) | |
4 | eqid 2735 | . . . . . . 7 ⊢ (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈)) | |
5 | 3, 4 | hlcompl 30944 | . . . . . 6 ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐹 ∈ (Cau‘(IndMet‘𝑈))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) |
6 | 1, 2, 5 | sylancr 587 | . . . . 5 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) |
7 | eldm2g 5913 | . . . . . 6 ⊢ (𝐹 ∈ (Cau‘(IndMet‘𝑈)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))) | |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))) |
9 | 6, 8 | mpbid 232 | . . . 4 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) |
10 | df-br 5149 | . . . . . 6 ⊢ (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 ↔ 〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) | |
11 | 1 | hlnvi 30921 | . . . . . . . . . 10 ⊢ 𝑈 ∈ NrmCVec |
12 | df-hba 30998 | . . . . . . . . . . . 12 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
13 | axhil.1 | . . . . . . . . . . . . 13 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
14 | 13 | fveq2i 6910 | . . . . . . . . . . . 12 ⊢ (BaseSet‘𝑈) = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
15 | 12, 14 | eqtr4i 2766 | . . . . . . . . . . 11 ⊢ ℋ = (BaseSet‘𝑈) |
16 | 15, 3 | imsxmet 30721 | . . . . . . . . . 10 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘ ℋ)) |
17 | 4 | mopntopon 24465 | . . . . . . . . . 10 ⊢ ((IndMet‘𝑈) ∈ (∞Met‘ ℋ) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ)) |
18 | 11, 16, 17 | mp2b 10 | . . . . . . . . 9 ⊢ (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ) |
19 | lmcl 23321 | . . . . . . . . 9 ⊢ (((MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥) → 𝑥 ∈ ℋ) | |
20 | 18, 19 | mpan 690 | . . . . . . . 8 ⊢ (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → 𝑥 ∈ ℋ) |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → 𝑥 ∈ ℋ)) |
22 | 13, 11, 15, 3, 4 | h2hlm 31009 | . . . . . . . . . . . 12 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ)) |
23 | 22 | breqi 5154 | . . . . . . . . . . 11 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ 𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥) |
24 | brres 6007 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ V → (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))) | |
25 | 24 | elv 3483 | . . . . . . . . . . 11 ⊢ (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
26 | 23, 25 | bitri 275 | . . . . . . . . . 10 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
27 | 26 | baib 535 | . . . . . . . . 9 ⊢ (𝐹 ∈ ( ℋ ↑m ℕ) → (𝐹 ⇝𝑣 𝑥 ↔ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
28 | 27 | adantl 481 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹 ⇝𝑣 𝑥 ↔ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
29 | 28 | biimprd 248 | . . . . . . 7 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → 𝐹 ⇝𝑣 𝑥)) |
30 | 21, 29 | jcad 512 | . . . . . 6 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → (𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥))) |
31 | 10, 30 | biimtrrid 243 | . . . . 5 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → (𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥))) |
32 | 31 | eximdv 1915 | . . . 4 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥))) |
33 | 9, 32 | mpd 15 | . . 3 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥)) |
34 | elin 3979 | . . 3 ⊢ (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) ↔ (𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ))) | |
35 | df-rex 3069 | . . 3 ⊢ (∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ↔ ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥)) | |
36 | 33, 34, 35 | 3imtr4i 292 | . 2 ⊢ (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
37 | 13, 11, 15, 3 | h2hcau 31008 | . 2 ⊢ Cauchy = ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) |
38 | 36, 37 | eleq2s 2857 | 1 ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ∃wrex 3068 Vcvv 3478 ∩ cin 3962 〈cop 4637 class class class wbr 5148 dom cdm 5689 ↾ cres 5691 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 ℕcn 12264 ∞Metcxmet 21367 MetOpencmopn 21372 TopOnctopon 22932 ⇝𝑡clm 23250 Cauccau 25301 NrmCVeccnv 30613 BaseSetcba 30615 IndMetcims 30620 CHilOLDchlo 30914 ℋchba 30948 +ℎ cva 30949 ·ℎ csm 30950 normℎcno 30952 Cauchyccauold 30955 ⇝𝑣 chli 30956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ico 13390 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-rest 17469 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-top 22916 df-topon 22933 df-bases 22969 df-ntr 23044 df-nei 23122 df-lm 23253 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-cfil 25303 df-cau 25304 df-cmet 25305 df-grpo 30522 df-gid 30523 df-ginv 30524 df-gdiv 30525 df-ablo 30574 df-vc 30588 df-nv 30621 df-va 30624 df-ba 30625 df-sm 30626 df-0v 30627 df-vs 30628 df-nmcv 30629 df-ims 30630 df-cbn 30892 df-hlo 30915 df-hba 30998 df-hvsub 31000 df-hlim 31001 df-hcau 31002 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |