| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > axhcompl-zf | Structured version Visualization version GIF version | ||
| Description: Derive Axiom ax-hcompl 31146 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
| Ref | Expression |
|---|---|
| axhcompl-zf | ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axhil.2 | . . . . . 6 ⊢ 𝑈 ∈ CHilOLD | |
| 2 | simpl 482 | . . . . . 6 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ (Cau‘(IndMet‘𝑈))) | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (IndMet‘𝑈) = (IndMet‘𝑈) | |
| 4 | eqid 2729 | . . . . . . 7 ⊢ (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈)) | |
| 5 | 3, 4 | hlcompl 30859 | . . . . . 6 ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐹 ∈ (Cau‘(IndMet‘𝑈))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) |
| 6 | 1, 2, 5 | sylancr 587 | . . . . 5 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) |
| 7 | eldm2g 5842 | . . . . . 6 ⊢ (𝐹 ∈ (Cau‘(IndMet‘𝑈)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))) | |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))) |
| 9 | 6, 8 | mpbid 232 | . . . 4 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) |
| 10 | df-br 5093 | . . . . . 6 ⊢ (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 ↔ 〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) | |
| 11 | 1 | hlnvi 30836 | . . . . . . . . . 10 ⊢ 𝑈 ∈ NrmCVec |
| 12 | df-hba 30913 | . . . . . . . . . . . 12 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 13 | axhil.1 | . . . . . . . . . . . . 13 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 14 | 13 | fveq2i 6825 | . . . . . . . . . . . 12 ⊢ (BaseSet‘𝑈) = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 15 | 12, 14 | eqtr4i 2755 | . . . . . . . . . . 11 ⊢ ℋ = (BaseSet‘𝑈) |
| 16 | 15, 3 | imsxmet 30636 | . . . . . . . . . 10 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘ ℋ)) |
| 17 | 4 | mopntopon 24325 | . . . . . . . . . 10 ⊢ ((IndMet‘𝑈) ∈ (∞Met‘ ℋ) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ)) |
| 18 | 11, 16, 17 | mp2b 10 | . . . . . . . . 9 ⊢ (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ) |
| 19 | lmcl 23182 | . . . . . . . . 9 ⊢ (((MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥) → 𝑥 ∈ ℋ) | |
| 20 | 18, 19 | mpan 690 | . . . . . . . 8 ⊢ (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → 𝑥 ∈ ℋ) |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → 𝑥 ∈ ℋ)) |
| 22 | 13, 11, 15, 3, 4 | h2hlm 30924 | . . . . . . . . . . . 12 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ)) |
| 23 | 22 | breqi 5098 | . . . . . . . . . . 11 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ 𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥) |
| 24 | brres 5937 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ V → (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))) | |
| 25 | 24 | elv 3441 | . . . . . . . . . . 11 ⊢ (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
| 26 | 23, 25 | bitri 275 | . . . . . . . . . 10 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
| 27 | 26 | baib 535 | . . . . . . . . 9 ⊢ (𝐹 ∈ ( ℋ ↑m ℕ) → (𝐹 ⇝𝑣 𝑥 ↔ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
| 28 | 27 | adantl 481 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹 ⇝𝑣 𝑥 ↔ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
| 29 | 28 | biimprd 248 | . . . . . . 7 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → 𝐹 ⇝𝑣 𝑥)) |
| 30 | 21, 29 | jcad 512 | . . . . . 6 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → (𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥))) |
| 31 | 10, 30 | biimtrrid 243 | . . . . 5 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → (𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥))) |
| 32 | 31 | eximdv 1917 | . . . 4 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥))) |
| 33 | 9, 32 | mpd 15 | . . 3 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥)) |
| 34 | elin 3919 | . . 3 ⊢ (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) ↔ (𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ))) | |
| 35 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ↔ ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥)) | |
| 36 | 33, 34, 35 | 3imtr4i 292 | . 2 ⊢ (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
| 37 | 13, 11, 15, 3 | h2hcau 30923 | . 2 ⊢ Cauchy = ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) |
| 38 | 36, 37 | eleq2s 2846 | 1 ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 Vcvv 3436 ∩ cin 3902 〈cop 4583 class class class wbr 5092 dom cdm 5619 ↾ cres 5621 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 ℕcn 12128 ∞Metcxmet 21246 MetOpencmopn 21251 TopOnctopon 22795 ⇝𝑡clm 23111 Cauccau 25151 NrmCVeccnv 30528 BaseSetcba 30530 IndMetcims 30535 CHilOLDchlo 30829 ℋchba 30863 +ℎ cva 30864 ·ℎ csm 30865 normℎcno 30867 Cauchyccauold 30870 ⇝𝑣 chli 30871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ico 13254 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-rest 17326 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-top 22779 df-topon 22796 df-bases 22831 df-ntr 22905 df-nei 22983 df-lm 23114 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-cfil 25153 df-cau 25154 df-cmet 25155 df-grpo 30437 df-gid 30438 df-ginv 30439 df-gdiv 30440 df-ablo 30489 df-vc 30503 df-nv 30536 df-va 30539 df-ba 30540 df-sm 30541 df-0v 30542 df-vs 30543 df-nmcv 30544 df-ims 30545 df-cbn 30807 df-hlo 30830 df-hba 30913 df-hvsub 30915 df-hlim 30916 df-hcau 30917 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |