![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > axhcompl-zf | Structured version Visualization version GIF version |
Description: Derive Axiom ax-hcompl 31234 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
Ref | Expression |
---|---|
axhcompl-zf | ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axhil.2 | . . . . . 6 ⊢ 𝑈 ∈ CHilOLD | |
2 | simpl 482 | . . . . . 6 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ (Cau‘(IndMet‘𝑈))) | |
3 | eqid 2740 | . . . . . . 7 ⊢ (IndMet‘𝑈) = (IndMet‘𝑈) | |
4 | eqid 2740 | . . . . . . 7 ⊢ (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈)) | |
5 | 3, 4 | hlcompl 30947 | . . . . . 6 ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐹 ∈ (Cau‘(IndMet‘𝑈))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) |
6 | 1, 2, 5 | sylancr 586 | . . . . 5 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) |
7 | eldm2g 5924 | . . . . . 6 ⊢ (𝐹 ∈ (Cau‘(IndMet‘𝑈)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))) | |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))) |
9 | 6, 8 | mpbid 232 | . . . 4 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) |
10 | df-br 5167 | . . . . . 6 ⊢ (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 ↔ 〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) | |
11 | 1 | hlnvi 30924 | . . . . . . . . . 10 ⊢ 𝑈 ∈ NrmCVec |
12 | df-hba 31001 | . . . . . . . . . . . 12 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
13 | axhil.1 | . . . . . . . . . . . . 13 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
14 | 13 | fveq2i 6923 | . . . . . . . . . . . 12 ⊢ (BaseSet‘𝑈) = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
15 | 12, 14 | eqtr4i 2771 | . . . . . . . . . . 11 ⊢ ℋ = (BaseSet‘𝑈) |
16 | 15, 3 | imsxmet 30724 | . . . . . . . . . 10 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘ ℋ)) |
17 | 4 | mopntopon 24470 | . . . . . . . . . 10 ⊢ ((IndMet‘𝑈) ∈ (∞Met‘ ℋ) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ)) |
18 | 11, 16, 17 | mp2b 10 | . . . . . . . . 9 ⊢ (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ) |
19 | lmcl 23326 | . . . . . . . . 9 ⊢ (((MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥) → 𝑥 ∈ ℋ) | |
20 | 18, 19 | mpan 689 | . . . . . . . 8 ⊢ (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → 𝑥 ∈ ℋ) |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → 𝑥 ∈ ℋ)) |
22 | 13, 11, 15, 3, 4 | h2hlm 31012 | . . . . . . . . . . . 12 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ)) |
23 | 22 | breqi 5172 | . . . . . . . . . . 11 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ 𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥) |
24 | brres 6016 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ V → (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))) | |
25 | 24 | elv 3493 | . . . . . . . . . . 11 ⊢ (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
26 | 23, 25 | bitri 275 | . . . . . . . . . 10 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
27 | 26 | baib 535 | . . . . . . . . 9 ⊢ (𝐹 ∈ ( ℋ ↑m ℕ) → (𝐹 ⇝𝑣 𝑥 ↔ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
28 | 27 | adantl 481 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹 ⇝𝑣 𝑥 ↔ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
29 | 28 | biimprd 248 | . . . . . . 7 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → 𝐹 ⇝𝑣 𝑥)) |
30 | 21, 29 | jcad 512 | . . . . . 6 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → (𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥))) |
31 | 10, 30 | biimtrrid 243 | . . . . 5 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → (𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥))) |
32 | 31 | eximdv 1916 | . . . 4 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥))) |
33 | 9, 32 | mpd 15 | . . 3 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥)) |
34 | elin 3992 | . . 3 ⊢ (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) ↔ (𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ))) | |
35 | df-rex 3077 | . . 3 ⊢ (∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ↔ ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥)) | |
36 | 33, 34, 35 | 3imtr4i 292 | . 2 ⊢ (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
37 | 13, 11, 15, 3 | h2hcau 31011 | . 2 ⊢ Cauchy = ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) |
38 | 36, 37 | eleq2s 2862 | 1 ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ∩ cin 3975 〈cop 4654 class class class wbr 5166 dom cdm 5700 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 ℕcn 12293 ∞Metcxmet 21372 MetOpencmopn 21377 TopOnctopon 22937 ⇝𝑡clm 23255 Cauccau 25306 NrmCVeccnv 30616 BaseSetcba 30618 IndMetcims 30623 CHilOLDchlo 30917 ℋchba 30951 +ℎ cva 30952 ·ℎ csm 30953 normℎcno 30955 Cauchyccauold 30958 ⇝𝑣 chli 30959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ico 13413 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-rest 17482 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-top 22921 df-topon 22938 df-bases 22974 df-ntr 23049 df-nei 23127 df-lm 23258 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-cfil 25308 df-cau 25309 df-cmet 25310 df-grpo 30525 df-gid 30526 df-ginv 30527 df-gdiv 30528 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-vs 30631 df-nmcv 30632 df-ims 30633 df-cbn 30895 df-hlo 30918 df-hba 31001 df-hvsub 31003 df-hlim 31004 df-hcau 31005 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |