| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > axhcompl-zf | Structured version Visualization version GIF version | ||
| Description: Derive Axiom ax-hcompl 31183 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
| Ref | Expression |
|---|---|
| axhcompl-zf | ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axhil.2 | . . . . . 6 ⊢ 𝑈 ∈ CHilOLD | |
| 2 | simpl 482 | . . . . . 6 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ (Cau‘(IndMet‘𝑈))) | |
| 3 | eqid 2735 | . . . . . . 7 ⊢ (IndMet‘𝑈) = (IndMet‘𝑈) | |
| 4 | eqid 2735 | . . . . . . 7 ⊢ (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈)) | |
| 5 | 3, 4 | hlcompl 30896 | . . . . . 6 ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐹 ∈ (Cau‘(IndMet‘𝑈))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) |
| 6 | 1, 2, 5 | sylancr 587 | . . . . 5 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) |
| 7 | eldm2g 5879 | . . . . . 6 ⊢ (𝐹 ∈ (Cau‘(IndMet‘𝑈)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))) | |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))) |
| 9 | 6, 8 | mpbid 232 | . . . 4 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) |
| 10 | df-br 5120 | . . . . . 6 ⊢ (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 ↔ 〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) | |
| 11 | 1 | hlnvi 30873 | . . . . . . . . . 10 ⊢ 𝑈 ∈ NrmCVec |
| 12 | df-hba 30950 | . . . . . . . . . . . 12 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 13 | axhil.1 | . . . . . . . . . . . . 13 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 14 | 13 | fveq2i 6879 | . . . . . . . . . . . 12 ⊢ (BaseSet‘𝑈) = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 15 | 12, 14 | eqtr4i 2761 | . . . . . . . . . . 11 ⊢ ℋ = (BaseSet‘𝑈) |
| 16 | 15, 3 | imsxmet 30673 | . . . . . . . . . 10 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘ ℋ)) |
| 17 | 4 | mopntopon 24378 | . . . . . . . . . 10 ⊢ ((IndMet‘𝑈) ∈ (∞Met‘ ℋ) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ)) |
| 18 | 11, 16, 17 | mp2b 10 | . . . . . . . . 9 ⊢ (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ) |
| 19 | lmcl 23235 | . . . . . . . . 9 ⊢ (((MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥) → 𝑥 ∈ ℋ) | |
| 20 | 18, 19 | mpan 690 | . . . . . . . 8 ⊢ (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → 𝑥 ∈ ℋ) |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → 𝑥 ∈ ℋ)) |
| 22 | 13, 11, 15, 3, 4 | h2hlm 30961 | . . . . . . . . . . . 12 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ)) |
| 23 | 22 | breqi 5125 | . . . . . . . . . . 11 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ 𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥) |
| 24 | brres 5973 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ V → (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))) | |
| 25 | 24 | elv 3464 | . . . . . . . . . . 11 ⊢ (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
| 26 | 23, 25 | bitri 275 | . . . . . . . . . 10 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
| 27 | 26 | baib 535 | . . . . . . . . 9 ⊢ (𝐹 ∈ ( ℋ ↑m ℕ) → (𝐹 ⇝𝑣 𝑥 ↔ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
| 28 | 27 | adantl 481 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹 ⇝𝑣 𝑥 ↔ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
| 29 | 28 | biimprd 248 | . . . . . . 7 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → 𝐹 ⇝𝑣 𝑥)) |
| 30 | 21, 29 | jcad 512 | . . . . . 6 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → (𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥))) |
| 31 | 10, 30 | biimtrrid 243 | . . . . 5 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → (𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥))) |
| 32 | 31 | eximdv 1917 | . . . 4 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥))) |
| 33 | 9, 32 | mpd 15 | . . 3 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥)) |
| 34 | elin 3942 | . . 3 ⊢ (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) ↔ (𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ))) | |
| 35 | df-rex 3061 | . . 3 ⊢ (∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ↔ ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥)) | |
| 36 | 33, 34, 35 | 3imtr4i 292 | . 2 ⊢ (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
| 37 | 13, 11, 15, 3 | h2hcau 30960 | . 2 ⊢ Cauchy = ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) |
| 38 | 36, 37 | eleq2s 2852 | 1 ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 Vcvv 3459 ∩ cin 3925 〈cop 4607 class class class wbr 5119 dom cdm 5654 ↾ cres 5656 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 ℕcn 12240 ∞Metcxmet 21300 MetOpencmopn 21305 TopOnctopon 22848 ⇝𝑡clm 23164 Cauccau 25205 NrmCVeccnv 30565 BaseSetcba 30567 IndMetcims 30572 CHilOLDchlo 30866 ℋchba 30900 +ℎ cva 30901 ·ℎ csm 30902 normℎcno 30904 Cauchyccauold 30907 ⇝𝑣 chli 30908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ico 13368 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-rest 17436 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-top 22832 df-topon 22849 df-bases 22884 df-ntr 22958 df-nei 23036 df-lm 23167 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-cfil 25207 df-cau 25208 df-cmet 25209 df-grpo 30474 df-gid 30475 df-ginv 30476 df-gdiv 30477 df-ablo 30526 df-vc 30540 df-nv 30573 df-va 30576 df-ba 30577 df-sm 30578 df-0v 30579 df-vs 30580 df-nmcv 30581 df-ims 30582 df-cbn 30844 df-hlo 30867 df-hba 30950 df-hvsub 30952 df-hlim 30953 df-hcau 30954 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |