HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhcompl-zf Structured version   Visualization version   GIF version

Theorem axhcompl-zf 30927
Description: Derive Axiom ax-hcompl 31131 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhcompl-zf (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑈

Proof of Theorem axhcompl-zf
StepHypRef Expression
1 axhil.2 . . . . . 6 𝑈 ∈ CHilOLD
2 simpl 482 . . . . . 6 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ (Cau‘(IndMet‘𝑈)))
3 eqid 2729 . . . . . . 7 (IndMet‘𝑈) = (IndMet‘𝑈)
4 eqid 2729 . . . . . . 7 (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈))
53, 4hlcompl 30844 . . . . . 6 ((𝑈 ∈ CHilOLD𝐹 ∈ (Cau‘(IndMet‘𝑈))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
61, 2, 5sylancr 587 . . . . 5 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
7 eldm2g 5863 . . . . . 6 (𝐹 ∈ (Cau‘(IndMet‘𝑈)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))))
87adantr 480 . . . . 5 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))))
96, 8mpbid 232 . . . 4 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
10 df-br 5108 . . . . . 6 (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 ↔ ⟨𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
111hlnvi 30821 . . . . . . . . . 10 𝑈 ∈ NrmCVec
12 df-hba 30898 . . . . . . . . . . . 12 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
13 axhil.1 . . . . . . . . . . . . 13 𝑈 = ⟨⟨ + , · ⟩, norm
1413fveq2i 6861 . . . . . . . . . . . 12 (BaseSet‘𝑈) = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
1512, 14eqtr4i 2755 . . . . . . . . . . 11 ℋ = (BaseSet‘𝑈)
1615, 3imsxmet 30621 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘ ℋ))
174mopntopon 24327 . . . . . . . . . 10 ((IndMet‘𝑈) ∈ (∞Met‘ ℋ) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ))
1811, 16, 17mp2b 10 . . . . . . . . 9 (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ)
19 lmcl 23184 . . . . . . . . 9 (((MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥) → 𝑥 ∈ ℋ)
2018, 19mpan 690 . . . . . . . 8 (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥𝑥 ∈ ℋ)
2120a1i 11 . . . . . . 7 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥𝑥 ∈ ℋ))
2213, 11, 15, 3, 4h2hlm 30909 . . . . . . . . . . . 12 𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))
2322breqi 5113 . . . . . . . . . . 11 (𝐹𝑣 𝑥𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥)
24 brres 5957 . . . . . . . . . . . 12 (𝑥 ∈ V → (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)))
2524elv 3452 . . . . . . . . . . 11 (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2623, 25bitri 275 . . . . . . . . . 10 (𝐹𝑣 𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2726baib 535 . . . . . . . . 9 (𝐹 ∈ ( ℋ ↑m ℕ) → (𝐹𝑣 𝑥𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2827adantl 481 . . . . . . . 8 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹𝑣 𝑥𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2928biimprd 248 . . . . . . 7 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥𝐹𝑣 𝑥))
3021, 29jcad 512 . . . . . 6 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → (𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥)))
3110, 30biimtrrid 243 . . . . 5 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (⟨𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → (𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥)))
3231eximdv 1917 . . . 4 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥)))
339, 32mpd 15 . . 3 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥))
34 elin 3930 . . 3 (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) ↔ (𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)))
35 df-rex 3054 . . 3 (∃𝑥 ∈ ℋ 𝐹𝑣 𝑥 ↔ ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥))
3633, 34, 353imtr4i 292 . 2 (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
3713, 11, 15, 3h2hcau 30908 . 2 Cauchy = ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ))
3836, 37eleq2s 2846 1 (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  Vcvv 3447  cin 3913  cop 4595   class class class wbr 5107  dom cdm 5638  cres 5640  cfv 6511  (class class class)co 7387  m cmap 8799  cn 12186  ∞Metcxmet 21249  MetOpencmopn 21254  TopOnctopon 22797  𝑡clm 23113  Cauccau 25153  NrmCVeccnv 30513  BaseSetcba 30515  IndMetcims 30520  CHilOLDchlo 30814  chba 30848   + cva 30849   · csm 30850  normcno 30852  Cauchyccauold 30855  𝑣 chli 30856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ico 13312  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-top 22781  df-topon 22798  df-bases 22833  df-ntr 22907  df-nei 22985  df-lm 23116  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-cfil 25155  df-cau 25156  df-cmet 25157  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ims 30530  df-cbn 30792  df-hlo 30815  df-hba 30898  df-hvsub 30900  df-hlim 30901  df-hcau 30902
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator