| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > axhcompl-zf | Structured version Visualization version GIF version | ||
| Description: Derive Axiom ax-hcompl 31131 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
| Ref | Expression |
|---|---|
| axhcompl-zf | ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axhil.2 | . . . . . 6 ⊢ 𝑈 ∈ CHilOLD | |
| 2 | simpl 482 | . . . . . 6 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ (Cau‘(IndMet‘𝑈))) | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (IndMet‘𝑈) = (IndMet‘𝑈) | |
| 4 | eqid 2729 | . . . . . . 7 ⊢ (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈)) | |
| 5 | 3, 4 | hlcompl 30844 | . . . . . 6 ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐹 ∈ (Cau‘(IndMet‘𝑈))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) |
| 6 | 1, 2, 5 | sylancr 587 | . . . . 5 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) |
| 7 | eldm2g 5863 | . . . . . 6 ⊢ (𝐹 ∈ (Cau‘(IndMet‘𝑈)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))) | |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))) |
| 9 | 6, 8 | mpbid 232 | . . . 4 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) |
| 10 | df-br 5108 | . . . . . 6 ⊢ (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 ↔ 〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))) | |
| 11 | 1 | hlnvi 30821 | . . . . . . . . . 10 ⊢ 𝑈 ∈ NrmCVec |
| 12 | df-hba 30898 | . . . . . . . . . . . 12 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 13 | axhil.1 | . . . . . . . . . . . . 13 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 14 | 13 | fveq2i 6861 | . . . . . . . . . . . 12 ⊢ (BaseSet‘𝑈) = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 15 | 12, 14 | eqtr4i 2755 | . . . . . . . . . . 11 ⊢ ℋ = (BaseSet‘𝑈) |
| 16 | 15, 3 | imsxmet 30621 | . . . . . . . . . 10 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘ ℋ)) |
| 17 | 4 | mopntopon 24327 | . . . . . . . . . 10 ⊢ ((IndMet‘𝑈) ∈ (∞Met‘ ℋ) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ)) |
| 18 | 11, 16, 17 | mp2b 10 | . . . . . . . . 9 ⊢ (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ) |
| 19 | lmcl 23184 | . . . . . . . . 9 ⊢ (((MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥) → 𝑥 ∈ ℋ) | |
| 20 | 18, 19 | mpan 690 | . . . . . . . 8 ⊢ (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → 𝑥 ∈ ℋ) |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → 𝑥 ∈ ℋ)) |
| 22 | 13, 11, 15, 3, 4 | h2hlm 30909 | . . . . . . . . . . . 12 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ)) |
| 23 | 22 | breqi 5113 | . . . . . . . . . . 11 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ 𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥) |
| 24 | brres 5957 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ V → (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))) | |
| 25 | 24 | elv 3452 | . . . . . . . . . . 11 ⊢ (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
| 26 | 23, 25 | bitri 275 | . . . . . . . . . 10 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
| 27 | 26 | baib 535 | . . . . . . . . 9 ⊢ (𝐹 ∈ ( ℋ ↑m ℕ) → (𝐹 ⇝𝑣 𝑥 ↔ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
| 28 | 27 | adantl 481 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹 ⇝𝑣 𝑥 ↔ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)) |
| 29 | 28 | biimprd 248 | . . . . . . 7 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → 𝐹 ⇝𝑣 𝑥)) |
| 30 | 21, 29 | jcad 512 | . . . . . 6 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → (𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥))) |
| 31 | 10, 30 | biimtrrid 243 | . . . . 5 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → (𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥))) |
| 32 | 31 | eximdv 1917 | . . . 4 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (∃𝑥〈𝐹, 𝑥〉 ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥))) |
| 33 | 9, 32 | mpd 15 | . . 3 ⊢ ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥)) |
| 34 | elin 3930 | . . 3 ⊢ (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) ↔ (𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ))) | |
| 35 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ↔ ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹 ⇝𝑣 𝑥)) | |
| 36 | 33, 34, 35 | 3imtr4i 292 | . 2 ⊢ (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
| 37 | 13, 11, 15, 3 | h2hcau 30908 | . 2 ⊢ Cauchy = ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) |
| 38 | 36, 37 | eleq2s 2846 | 1 ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 ∩ cin 3913 〈cop 4595 class class class wbr 5107 dom cdm 5638 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ℕcn 12186 ∞Metcxmet 21249 MetOpencmopn 21254 TopOnctopon 22797 ⇝𝑡clm 23113 Cauccau 25153 NrmCVeccnv 30513 BaseSetcba 30515 IndMetcims 30520 CHilOLDchlo 30814 ℋchba 30848 +ℎ cva 30849 ·ℎ csm 30850 normℎcno 30852 Cauchyccauold 30855 ⇝𝑣 chli 30856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ico 13312 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-rest 17385 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-top 22781 df-topon 22798 df-bases 22833 df-ntr 22907 df-nei 22985 df-lm 23116 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-cfil 25155 df-cau 25156 df-cmet 25157 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-vs 30528 df-nmcv 30529 df-ims 30530 df-cbn 30792 df-hlo 30815 df-hba 30898 df-hvsub 30900 df-hlim 30901 df-hcau 30902 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |