HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhcompl-zf Structured version   Visualization version   GIF version

Theorem axhcompl-zf 29079
Description: Derive Axiom ax-hcompl 29283 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhcompl-zf (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑈

Proof of Theorem axhcompl-zf
StepHypRef Expression
1 axhil.2 . . . . . 6 𝑈 ∈ CHilOLD
2 simpl 486 . . . . . 6 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ (Cau‘(IndMet‘𝑈)))
3 eqid 2737 . . . . . . 7 (IndMet‘𝑈) = (IndMet‘𝑈)
4 eqid 2737 . . . . . . 7 (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈))
53, 4hlcompl 28996 . . . . . 6 ((𝑈 ∈ CHilOLD𝐹 ∈ (Cau‘(IndMet‘𝑈))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
61, 2, 5sylancr 590 . . . . 5 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
7 eldm2g 5768 . . . . . 6 (𝐹 ∈ (Cau‘(IndMet‘𝑈)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))))
87adantr 484 . . . . 5 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))))
96, 8mpbid 235 . . . 4 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
10 df-br 5054 . . . . . 6 (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 ↔ ⟨𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
111hlnvi 28973 . . . . . . . . . 10 𝑈 ∈ NrmCVec
12 df-hba 29050 . . . . . . . . . . . 12 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
13 axhil.1 . . . . . . . . . . . . 13 𝑈 = ⟨⟨ + , · ⟩, norm
1413fveq2i 6720 . . . . . . . . . . . 12 (BaseSet‘𝑈) = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
1512, 14eqtr4i 2768 . . . . . . . . . . 11 ℋ = (BaseSet‘𝑈)
1615, 3imsxmet 28773 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘ ℋ))
174mopntopon 23337 . . . . . . . . . 10 ((IndMet‘𝑈) ∈ (∞Met‘ ℋ) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ))
1811, 16, 17mp2b 10 . . . . . . . . 9 (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ)
19 lmcl 22194 . . . . . . . . 9 (((MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥) → 𝑥 ∈ ℋ)
2018, 19mpan 690 . . . . . . . 8 (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥𝑥 ∈ ℋ)
2120a1i 11 . . . . . . 7 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥𝑥 ∈ ℋ))
2213, 11, 15, 3, 4h2hlm 29061 . . . . . . . . . . . 12 𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))
2322breqi 5059 . . . . . . . . . . 11 (𝐹𝑣 𝑥𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥)
24 brres 5858 . . . . . . . . . . . 12 (𝑥 ∈ V → (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)))
2524elv 3414 . . . . . . . . . . 11 (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2623, 25bitri 278 . . . . . . . . . 10 (𝐹𝑣 𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2726baib 539 . . . . . . . . 9 (𝐹 ∈ ( ℋ ↑m ℕ) → (𝐹𝑣 𝑥𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2827adantl 485 . . . . . . . 8 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹𝑣 𝑥𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2928biimprd 251 . . . . . . 7 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥𝐹𝑣 𝑥))
3021, 29jcad 516 . . . . . 6 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → (𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥)))
3110, 30syl5bir 246 . . . . 5 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (⟨𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → (𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥)))
3231eximdv 1925 . . . 4 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥)))
339, 32mpd 15 . . 3 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥))
34 elin 3882 . . 3 (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) ↔ (𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)))
35 df-rex 3067 . . 3 (∃𝑥 ∈ ℋ 𝐹𝑣 𝑥 ↔ ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥))
3633, 34, 353imtr4i 295 . 2 (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
3713, 11, 15, 3h2hcau 29060 . 2 Cauchy = ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ))
3836, 37eleq2s 2856 1 (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2110  wrex 3062  Vcvv 3408  cin 3865  cop 4547   class class class wbr 5053  dom cdm 5551  cres 5553  cfv 6380  (class class class)co 7213  m cmap 8508  cn 11830  ∞Metcxmet 20348  MetOpencmopn 20353  TopOnctopon 21807  𝑡clm 22123  Cauccau 24150  NrmCVeccnv 28665  BaseSetcba 28667  IndMetcims 28672  CHilOLDchlo 28966  chba 29000   + cva 29001   · csm 29002  normcno 29004  Cauchyccauold 29007  𝑣 chli 29008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ico 12941  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-rest 16927  df-topgen 16948  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-top 21791  df-topon 21808  df-bases 21843  df-ntr 21917  df-nei 21995  df-lm 22126  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-cfil 24152  df-cau 24153  df-cmet 24154  df-grpo 28574  df-gid 28575  df-ginv 28576  df-gdiv 28577  df-ablo 28626  df-vc 28640  df-nv 28673  df-va 28676  df-ba 28677  df-sm 28678  df-0v 28679  df-vs 28680  df-nmcv 28681  df-ims 28682  df-cbn 28944  df-hlo 28967  df-hba 29050  df-hvsub 29052  df-hlim 29053  df-hcau 29054
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator