HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhcompl-zf Structured version   Visualization version   GIF version

Theorem axhcompl-zf 29261
Description: Derive Axiom ax-hcompl 29465 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhcompl-zf (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑈

Proof of Theorem axhcompl-zf
StepHypRef Expression
1 axhil.2 . . . . . 6 𝑈 ∈ CHilOLD
2 simpl 482 . . . . . 6 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ (Cau‘(IndMet‘𝑈)))
3 eqid 2738 . . . . . . 7 (IndMet‘𝑈) = (IndMet‘𝑈)
4 eqid 2738 . . . . . . 7 (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈))
53, 4hlcompl 29178 . . . . . 6 ((𝑈 ∈ CHilOLD𝐹 ∈ (Cau‘(IndMet‘𝑈))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
61, 2, 5sylancr 586 . . . . 5 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
7 eldm2g 5797 . . . . . 6 (𝐹 ∈ (Cau‘(IndMet‘𝑈)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))))
87adantr 480 . . . . 5 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))))
96, 8mpbid 231 . . . 4 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
10 df-br 5071 . . . . . 6 (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 ↔ ⟨𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
111hlnvi 29155 . . . . . . . . . 10 𝑈 ∈ NrmCVec
12 df-hba 29232 . . . . . . . . . . . 12 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
13 axhil.1 . . . . . . . . . . . . 13 𝑈 = ⟨⟨ + , · ⟩, norm
1413fveq2i 6759 . . . . . . . . . . . 12 (BaseSet‘𝑈) = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
1512, 14eqtr4i 2769 . . . . . . . . . . 11 ℋ = (BaseSet‘𝑈)
1615, 3imsxmet 28955 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘ ℋ))
174mopntopon 23500 . . . . . . . . . 10 ((IndMet‘𝑈) ∈ (∞Met‘ ℋ) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ))
1811, 16, 17mp2b 10 . . . . . . . . 9 (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ)
19 lmcl 22356 . . . . . . . . 9 (((MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥) → 𝑥 ∈ ℋ)
2018, 19mpan 686 . . . . . . . 8 (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥𝑥 ∈ ℋ)
2120a1i 11 . . . . . . 7 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥𝑥 ∈ ℋ))
2213, 11, 15, 3, 4h2hlm 29243 . . . . . . . . . . . 12 𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))
2322breqi 5076 . . . . . . . . . . 11 (𝐹𝑣 𝑥𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥)
24 brres 5887 . . . . . . . . . . . 12 (𝑥 ∈ V → (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)))
2524elv 3428 . . . . . . . . . . 11 (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2623, 25bitri 274 . . . . . . . . . 10 (𝐹𝑣 𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2726baib 535 . . . . . . . . 9 (𝐹 ∈ ( ℋ ↑m ℕ) → (𝐹𝑣 𝑥𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2827adantl 481 . . . . . . . 8 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹𝑣 𝑥𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2928biimprd 247 . . . . . . 7 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥𝐹𝑣 𝑥))
3021, 29jcad 512 . . . . . 6 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → (𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥)))
3110, 30syl5bir 242 . . . . 5 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (⟨𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → (𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥)))
3231eximdv 1921 . . . 4 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥)))
339, 32mpd 15 . . 3 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥))
34 elin 3899 . . 3 (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) ↔ (𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)))
35 df-rex 3069 . . 3 (∃𝑥 ∈ ℋ 𝐹𝑣 𝑥 ↔ ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥))
3633, 34, 353imtr4i 291 . 2 (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
3713, 11, 15, 3h2hcau 29242 . 2 Cauchy = ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ))
3836, 37eleq2s 2857 1 (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064  Vcvv 3422  cin 3882  cop 4564   class class class wbr 5070  dom cdm 5580  cres 5582  cfv 6418  (class class class)co 7255  m cmap 8573  cn 11903  ∞Metcxmet 20495  MetOpencmopn 20500  TopOnctopon 21967  𝑡clm 22285  Cauccau 24322  NrmCVeccnv 28847  BaseSetcba 28849  IndMetcims 28854  CHilOLDchlo 29148  chba 29182   + cva 29183   · csm 29184  normcno 29186  Cauchyccauold 29189  𝑣 chli 29190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-bases 22004  df-ntr 22079  df-nei 22157  df-lm 22288  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-cfil 24324  df-cau 24325  df-cmet 24326  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ims 28864  df-cbn 29126  df-hlo 29149  df-hba 29232  df-hvsub 29234  df-hlim 29235  df-hcau 29236
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator