HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhcompl-zf Structured version   Visualization version   GIF version

Theorem axhcompl-zf 30942
Description: Derive Axiom ax-hcompl 31146 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhcompl-zf (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑈

Proof of Theorem axhcompl-zf
StepHypRef Expression
1 axhil.2 . . . . . 6 𝑈 ∈ CHilOLD
2 simpl 482 . . . . . 6 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ (Cau‘(IndMet‘𝑈)))
3 eqid 2729 . . . . . . 7 (IndMet‘𝑈) = (IndMet‘𝑈)
4 eqid 2729 . . . . . . 7 (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈))
53, 4hlcompl 30859 . . . . . 6 ((𝑈 ∈ CHilOLD𝐹 ∈ (Cau‘(IndMet‘𝑈))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
61, 2, 5sylancr 587 . . . . 5 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
7 eldm2g 5842 . . . . . 6 (𝐹 ∈ (Cau‘(IndMet‘𝑈)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))))
87adantr 480 . . . . 5 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))))
96, 8mpbid 232 . . . 4 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
10 df-br 5093 . . . . . 6 (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 ↔ ⟨𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
111hlnvi 30836 . . . . . . . . . 10 𝑈 ∈ NrmCVec
12 df-hba 30913 . . . . . . . . . . . 12 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
13 axhil.1 . . . . . . . . . . . . 13 𝑈 = ⟨⟨ + , · ⟩, norm
1413fveq2i 6825 . . . . . . . . . . . 12 (BaseSet‘𝑈) = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
1512, 14eqtr4i 2755 . . . . . . . . . . 11 ℋ = (BaseSet‘𝑈)
1615, 3imsxmet 30636 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘ ℋ))
174mopntopon 24325 . . . . . . . . . 10 ((IndMet‘𝑈) ∈ (∞Met‘ ℋ) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ))
1811, 16, 17mp2b 10 . . . . . . . . 9 (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ)
19 lmcl 23182 . . . . . . . . 9 (((MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥) → 𝑥 ∈ ℋ)
2018, 19mpan 690 . . . . . . . 8 (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥𝑥 ∈ ℋ)
2120a1i 11 . . . . . . 7 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥𝑥 ∈ ℋ))
2213, 11, 15, 3, 4h2hlm 30924 . . . . . . . . . . . 12 𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))
2322breqi 5098 . . . . . . . . . . 11 (𝐹𝑣 𝑥𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥)
24 brres 5937 . . . . . . . . . . . 12 (𝑥 ∈ V → (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥)))
2524elv 3441 . . . . . . . . . . 11 (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2623, 25bitri 275 . . . . . . . . . 10 (𝐹𝑣 𝑥 ↔ (𝐹 ∈ ( ℋ ↑m ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2726baib 535 . . . . . . . . 9 (𝐹 ∈ ( ℋ ↑m ℕ) → (𝐹𝑣 𝑥𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2827adantl 481 . . . . . . . 8 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹𝑣 𝑥𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2928biimprd 248 . . . . . . 7 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥𝐹𝑣 𝑥))
3021, 29jcad 512 . . . . . 6 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → (𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥)))
3110, 30biimtrrid 243 . . . . 5 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (⟨𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → (𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥)))
3231eximdv 1917 . . . 4 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → (∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥)))
339, 32mpd 15 . . 3 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥))
34 elin 3919 . . 3 (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) ↔ (𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑m ℕ)))
35 df-rex 3054 . . 3 (∃𝑥 ∈ ℋ 𝐹𝑣 𝑥 ↔ ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥))
3633, 34, 353imtr4i 292 . 2 (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ)) → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
3713, 11, 15, 3h2hcau 30923 . 2 Cauchy = ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑m ℕ))
3836, 37eleq2s 2846 1 (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  Vcvv 3436  cin 3902  cop 4583   class class class wbr 5092  dom cdm 5619  cres 5621  cfv 6482  (class class class)co 7349  m cmap 8753  cn 12128  ∞Metcxmet 21246  MetOpencmopn 21251  TopOnctopon 22795  𝑡clm 23111  Cauccau 25151  NrmCVeccnv 30528  BaseSetcba 30530  IndMetcims 30535  CHilOLDchlo 30829  chba 30863   + cva 30864   · csm 30865  normcno 30867  Cauchyccauold 30870  𝑣 chli 30871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-top 22779  df-topon 22796  df-bases 22831  df-ntr 22905  df-nei 22983  df-lm 23114  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-cfil 25153  df-cau 25154  df-cmet 25155  df-grpo 30437  df-gid 30438  df-ginv 30439  df-gdiv 30440  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-vs 30543  df-nmcv 30544  df-ims 30545  df-cbn 30807  df-hlo 30830  df-hba 30913  df-hvsub 30915  df-hlim 30916  df-hcau 30917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator