HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhvdistr1-zf Structured version   Visualization version   GIF version

Theorem axhvdistr1-zf 29640
Description: Derive Axiom ax-hvdistr1 29658 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhvdistr1-zf ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))

Proof of Theorem axhvdistr1-zf
StepHypRef Expression
1 axhil.2 . 2 𝑈 ∈ CHilOLD
2 df-hba 29619 . . . 4 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
3 axhil.1 . . . . 5 𝑈 = ⟨⟨ + , · ⟩, norm
43fveq2i 6828 . . . 4 (BaseSet‘𝑈) = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
52, 4eqtr4i 2767 . . 3 ℋ = (BaseSet‘𝑈)
61hlnvi 29542 . . . 4 𝑈 ∈ NrmCVec
73, 6h2hva 29624 . . 3 + = ( +𝑣𝑈)
83, 6h2hsm 29625 . . 3 · = ( ·𝑠OLD𝑈)
95, 7, 8hldi 29557 . 2 ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
101, 9mpan 687 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  cop 4579  cfv 6479  (class class class)co 7337  cc 10970  BaseSetcba 29236  CHilOLDchlo 29535  chba 29569   + cva 29570   · csm 29571  normcno 29573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-ov 7340  df-oprab 7341  df-1st 7899  df-2nd 7900  df-vc 29209  df-nv 29242  df-va 29245  df-ba 29246  df-sm 29247  df-0v 29248  df-nmcv 29250  df-cbn 29513  df-hlo 29536  df-hba 29619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator