| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > axhfvmul-zf | Structured version Visualization version GIF version | ||
| Description: Derive Axiom ax-hfvmul 30934 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
| Ref | Expression |
|---|---|
| axhfvmul-zf | ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axhil.2 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
| 2 | df-hba 30898 | . . . 4 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 3 | axhil.1 | . . . . 5 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 4 | 3 | fveq2i 6861 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 5 | 2, 4 | eqtr4i 2755 | . . 3 ⊢ ℋ = (BaseSet‘𝑈) |
| 6 | 1 | hlnvi 30821 | . . . 4 ⊢ 𝑈 ∈ NrmCVec |
| 7 | 3, 6 | h2hsm 30904 | . . 3 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
| 8 | 5, 7 | hlmulf 30833 | . 2 ⊢ (𝑈 ∈ CHilOLD → ·ℎ :(ℂ × ℋ)⟶ ℋ) |
| 9 | 1, 8 | ax-mp 5 | 1 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 〈cop 4595 × cxp 5636 ⟶wf 6507 ‘cfv 6511 ℂcc 11066 BaseSetcba 30515 CHilOLDchlo 30814 ℋchba 30848 +ℎ cva 30849 ·ℎ csm 30850 normℎcno 30852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-1st 7968 df-2nd 7969 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-nmcv 30529 df-cbn 30792 df-hlo 30815 df-hba 30898 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |