| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > axhfvmul-zf | Structured version Visualization version GIF version | ||
| Description: Derive Axiom ax-hfvmul 30989 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
| Ref | Expression |
|---|---|
| axhfvmul-zf | ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axhil.2 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
| 2 | df-hba 30953 | . . . 4 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 3 | axhil.1 | . . . . 5 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 4 | 3 | fveq2i 6833 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 5 | 2, 4 | eqtr4i 2759 | . . 3 ⊢ ℋ = (BaseSet‘𝑈) |
| 6 | 1 | hlnvi 30876 | . . . 4 ⊢ 𝑈 ∈ NrmCVec |
| 7 | 3, 6 | h2hsm 30959 | . . 3 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
| 8 | 5, 7 | hlmulf 30888 | . 2 ⊢ (𝑈 ∈ CHilOLD → ·ℎ :(ℂ × ℋ)⟶ ℋ) |
| 9 | 1, 8 | ax-mp 5 | 1 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 〈cop 4583 × cxp 5619 ⟶wf 6484 ‘cfv 6488 ℂcc 11013 BaseSetcba 30570 CHilOLDchlo 30869 ℋchba 30903 +ℎ cva 30904 ·ℎ csm 30905 normℎcno 30907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-1st 7929 df-2nd 7930 df-vc 30543 df-nv 30576 df-va 30579 df-ba 30580 df-sm 30581 df-0v 30582 df-nmcv 30584 df-cbn 30847 df-hlo 30870 df-hba 30953 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |