HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhfvmul-zf Structured version   Visualization version   GIF version

Theorem axhfvmul-zf 30965
Description: Derive Axiom ax-hfvmul 30983 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhfvmul-zf · :(ℂ × ℋ)⟶ ℋ

Proof of Theorem axhfvmul-zf
StepHypRef Expression
1 axhil.2 . 2 𝑈 ∈ CHilOLD
2 df-hba 30947 . . . 4 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
3 axhil.1 . . . . 5 𝑈 = ⟨⟨ + , · ⟩, norm
43fveq2i 6825 . . . 4 (BaseSet‘𝑈) = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
52, 4eqtr4i 2757 . . 3 ℋ = (BaseSet‘𝑈)
61hlnvi 30870 . . . 4 𝑈 ∈ NrmCVec
73, 6h2hsm 30953 . . 3 · = ( ·𝑠OLD𝑈)
85, 7hlmulf 30882 . 2 (𝑈 ∈ CHilOLD· :(ℂ × ℋ)⟶ ℋ)
91, 8ax-mp 5 1 · :(ℂ × ℋ)⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  cop 4582   × cxp 5614  wf 6477  cfv 6481  cc 11004  BaseSetcba 30564  CHilOLDchlo 30863  chba 30897   + cva 30898   · csm 30899  normcno 30901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-1st 7921  df-2nd 7922  df-vc 30537  df-nv 30570  df-va 30573  df-ba 30574  df-sm 30575  df-0v 30576  df-nmcv 30578  df-cbn 30841  df-hlo 30864  df-hba 30947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator