HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhfvmul-zf Structured version   Visualization version   GIF version

Theorem axhfvmul-zf 31019
Description: Derive Axiom ax-hfvmul 31037 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhfvmul-zf · :(ℂ × ℋ)⟶ ℋ

Proof of Theorem axhfvmul-zf
StepHypRef Expression
1 axhil.2 . 2 𝑈 ∈ CHilOLD
2 df-hba 31001 . . . 4 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
3 axhil.1 . . . . 5 𝑈 = ⟨⟨ + , · ⟩, norm
43fveq2i 6923 . . . 4 (BaseSet‘𝑈) = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
52, 4eqtr4i 2771 . . 3 ℋ = (BaseSet‘𝑈)
61hlnvi 30924 . . . 4 𝑈 ∈ NrmCVec
73, 6h2hsm 31007 . . 3 · = ( ·𝑠OLD𝑈)
85, 7hlmulf 30936 . 2 (𝑈 ∈ CHilOLD· :(ℂ × ℋ)⟶ ℋ)
91, 8ax-mp 5 1 · :(ℂ × ℋ)⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  cop 4654   × cxp 5698  wf 6569  cfv 6573  cc 11182  BaseSetcba 30618  CHilOLDchlo 30917  chba 30951   + cva 30952   · csm 30953  normcno 30955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-1st 8030  df-2nd 8031  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-nmcv 30632  df-cbn 30895  df-hlo 30918  df-hba 31001
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator