MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnanel Structured version   Visualization version   GIF version

Theorem elnanel 9676
Description: Two classes are not elements of each other simultaneously. This is just a rewriting of en2lp 9675 and serves as an example in the context of Godel codes, see elnanelprv 35397. (Contributed by AV, 5-Nov-2023.) (New usage is discouraged.)
Assertion
Ref Expression
elnanel (𝐴𝐵𝐵𝐴)

Proof of Theorem elnanel
StepHypRef Expression
1 en2lp 9675 . 2 ¬ (𝐴𝐵𝐵𝐴)
2 df-nan 1489 . 2 ((𝐴𝐵𝐵𝐴) ↔ ¬ (𝐴𝐵𝐵𝐴))
31, 2mpbir 231 1 (𝐴𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wnan 1488  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-nan 1489  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-eprel 5599  df-fr 5652
This theorem is referenced by:  elnanelprv  35397
  Copyright terms: Public domain W3C validator