MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnanel Structured version   Visualization version   GIF version

Theorem elnanel 9497
Description: Two classes are not elements of each other simultaneously. This is just a rewriting of en2lp 9496 and serves as an example in the context of Godel codes, see elnanelprv 35473. (Contributed by AV, 5-Nov-2023.) (New usage is discouraged.)
Assertion
Ref Expression
elnanel (𝐴𝐵𝐵𝐴)

Proof of Theorem elnanel
StepHypRef Expression
1 en2lp 9496 . 2 ¬ (𝐴𝐵𝐵𝐴)
2 df-nan 1493 . 2 ((𝐴𝐵𝐵𝐴) ↔ ¬ (𝐴𝐵𝐵𝐴))
31, 2mpbir 231 1 (𝐴𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wnan 1492  wcel 2111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-nan 1493  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-eprel 5514  df-fr 5567
This theorem is referenced by:  elnanelprv  35473
  Copyright terms: Public domain W3C validator