MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnanel Structured version   Visualization version   GIF version

Theorem elnanel 9626
Description: Two classes are not elements of each other simultaneously. This is just a rewriting of en2lp 9625 and serves as an example in the context of Godel codes, see elnanelprv 35456. (Contributed by AV, 5-Nov-2023.) (New usage is discouraged.)
Assertion
Ref Expression
elnanel (𝐴𝐵𝐵𝐴)

Proof of Theorem elnanel
StepHypRef Expression
1 en2lp 9625 . 2 ¬ (𝐴𝐵𝐵𝐴)
2 df-nan 1492 . 2 ((𝐴𝐵𝐵𝐴) ↔ ¬ (𝐴𝐵𝐵𝐴))
31, 2mpbir 231 1 (𝐴𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wnan 1491  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-reg 9611
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-nan 1492  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-eprel 5558  df-fr 5611
This theorem is referenced by:  elnanelprv  35456
  Copyright terms: Public domain W3C validator