![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnanel | Structured version Visualization version GIF version |
Description: Two classes are not elements of each other simultaneously. This is just a rewriting of en2lp 9649 and serves as an example in the context of Godel codes, see elnanelprv 35257. (Contributed by AV, 5-Nov-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elnanel | ⊢ (𝐴 ∈ 𝐵 ⊼ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2lp 9649 | . 2 ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) | |
2 | df-nan 1486 | . 2 ⊢ ((𝐴 ∈ 𝐵 ⊼ 𝐵 ∈ 𝐴) ↔ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ (𝐴 ∈ 𝐵 ⊼ 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 394 ⊼ wnan 1485 ∈ wcel 2099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-reg 9635 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-nan 1486 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-eprel 5586 df-fr 5637 |
This theorem is referenced by: elnanelprv 35257 |
Copyright terms: Public domain | W3C validator |