![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2ex | Structured version Visualization version GIF version |
Description: The alternate function value is always a set if the range of the function is a set. (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
afv2ex | ⊢ (ran 𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-afv2 45431 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
2 | iotaex 6469 | . . . 4 ⊢ (℩𝑥𝐴𝐹𝑥) ∈ V | |
3 | 2 | a1i 11 | . . 3 ⊢ (ran 𝐹 ∈ 𝑉 → (℩𝑥𝐴𝐹𝑥) ∈ V) |
4 | uniexg 7677 | . . . 4 ⊢ (ran 𝐹 ∈ 𝑉 → ∪ ran 𝐹 ∈ V) | |
5 | 4 | pwexd 5334 | . . 3 ⊢ (ran 𝐹 ∈ 𝑉 → 𝒫 ∪ ran 𝐹 ∈ V) |
6 | 3, 5 | ifcld 4532 | . 2 ⊢ (ran 𝐹 ∈ 𝑉 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) ∈ V) |
7 | 1, 6 | eqeltrid 2842 | 1 ⊢ (ran 𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3445 ifcif 4486 𝒫 cpw 4560 ∪ cuni 4865 class class class wbr 5105 ran crn 5634 ℩cio 6446 defAt wdfat 45338 ''''cafv2 45430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-un 7672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2944 df-v 3447 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-uni 4866 df-iota 6448 df-afv2 45431 |
This theorem is referenced by: fexafv2ex 45442 fcdmvafv2v 45458 |
Copyright terms: Public domain | W3C validator |