Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2ex Structured version   Visualization version   GIF version

Theorem afv2ex 45922
Description: The alternate function value is always a set if the range of the function is a set. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
afv2ex (ran 𝐹𝑉 → (𝐹''''𝐴) ∈ V)

Proof of Theorem afv2ex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 45917 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
2 iotaex 6517 . . . 4 (℩𝑥𝐴𝐹𝑥) ∈ V
32a1i 11 . . 3 (ran 𝐹𝑉 → (℩𝑥𝐴𝐹𝑥) ∈ V)
4 uniexg 7730 . . . 4 (ran 𝐹𝑉 ran 𝐹 ∈ V)
54pwexd 5378 . . 3 (ran 𝐹𝑉 → 𝒫 ran 𝐹 ∈ V)
63, 5ifcld 4575 . 2 (ran 𝐹𝑉 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) ∈ V)
71, 6eqeltrid 2838 1 (ran 𝐹𝑉 → (𝐹''''𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3475  ifcif 4529  𝒫 cpw 4603   cuni 4909   class class class wbr 5149  ran crn 5678  cio 6494   defAt wdfat 45824  ''''cafv2 45916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-uni 4910  df-iota 6496  df-afv2 45917
This theorem is referenced by:  fexafv2ex  45928  fcdmvafv2v  45944
  Copyright terms: Public domain W3C validator