| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2ex | Structured version Visualization version GIF version | ||
| Description: The alternate function value is always a set if the range of the function is a set. (Contributed by AV, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| afv2ex | ⊢ (ran 𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-afv2 47155 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
| 2 | iotaex 6513 | . . . 4 ⊢ (℩𝑥𝐴𝐹𝑥) ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (ran 𝐹 ∈ 𝑉 → (℩𝑥𝐴𝐹𝑥) ∈ V) |
| 4 | uniexg 7741 | . . . 4 ⊢ (ran 𝐹 ∈ 𝑉 → ∪ ran 𝐹 ∈ V) | |
| 5 | 4 | pwexd 5359 | . . 3 ⊢ (ran 𝐹 ∈ 𝑉 → 𝒫 ∪ ran 𝐹 ∈ V) |
| 6 | 3, 5 | ifcld 4552 | . 2 ⊢ (ran 𝐹 ∈ 𝑉 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) ∈ V) |
| 7 | 1, 6 | eqeltrid 2837 | 1 ⊢ (ran 𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3463 ifcif 4505 𝒫 cpw 4580 ∪ cuni 4887 class class class wbr 5123 ran crn 5666 ℩cio 6491 defAt wdfat 47062 ''''cafv2 47154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-uni 4888 df-iota 6493 df-afv2 47155 |
| This theorem is referenced by: fexafv2ex 47166 fcdmvafv2v 47182 |
| Copyright terms: Public domain | W3C validator |