Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2ex Structured version   Visualization version   GIF version

Theorem afv2ex 42114
Description: The alternate function value is always a set if the range of the function is a set. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
afv2ex (ran 𝐹𝑉 → (𝐹''''𝐴) ∈ V)

Proof of Theorem afv2ex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 42109 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
2 iotaex 6107 . . . 4 (℩𝑥𝐴𝐹𝑥) ∈ V
32a1i 11 . . 3 (ran 𝐹𝑉 → (℩𝑥𝐴𝐹𝑥) ∈ V)
4 uniexg 7220 . . . 4 (ran 𝐹𝑉 ran 𝐹 ∈ V)
54pwexd 5081 . . 3 (ran 𝐹𝑉 → 𝒫 ran 𝐹 ∈ V)
63, 5ifcld 4353 . 2 (ran 𝐹𝑉 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) ∈ V)
71, 6syl5eqel 2910 1 (ran 𝐹𝑉 → (𝐹''''𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2164  Vcvv 3414  ifcif 4308  𝒫 cpw 4380   cuni 4660   class class class wbr 4875  ran crn 5347  cio 6088   defAt wdfat 42016  ''''cafv2 42108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-uni 4661  df-iota 6090  df-afv2 42109
This theorem is referenced by:  fexafv2ex  42120  frnvafv2v  42136
  Copyright terms: Public domain W3C validator