Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2ex Structured version   Visualization version   GIF version

Theorem afv2ex 47185
Description: The alternate function value is always a set if the range of the function is a set. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
afv2ex (ran 𝐹𝑉 → (𝐹''''𝐴) ∈ V)

Proof of Theorem afv2ex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 47180 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
2 iotaex 6492 . . . 4 (℩𝑥𝐴𝐹𝑥) ∈ V
32a1i 11 . . 3 (ran 𝐹𝑉 → (℩𝑥𝐴𝐹𝑥) ∈ V)
4 uniexg 7723 . . . 4 (ran 𝐹𝑉 ran 𝐹 ∈ V)
54pwexd 5342 . . 3 (ran 𝐹𝑉 → 𝒫 ran 𝐹 ∈ V)
63, 5ifcld 4543 . 2 (ran 𝐹𝑉 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) ∈ V)
71, 6eqeltrid 2833 1 (ran 𝐹𝑉 → (𝐹''''𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3455  ifcif 4496  𝒫 cpw 4571   cuni 4879   class class class wbr 5115  ran crn 5647  cio 6470   defAt wdfat 47087  ''''cafv2 47179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2928  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-uni 4880  df-iota 6472  df-afv2 47180
This theorem is referenced by:  fexafv2ex  47191  fcdmvafv2v  47207
  Copyright terms: Public domain W3C validator