![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2ex | Structured version Visualization version GIF version |
Description: The alternate function value is always a set if the range of the function is a set. (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
afv2ex | ⊢ (ran 𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-afv2 45917 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
2 | iotaex 6517 | . . . 4 ⊢ (℩𝑥𝐴𝐹𝑥) ∈ V | |
3 | 2 | a1i 11 | . . 3 ⊢ (ran 𝐹 ∈ 𝑉 → (℩𝑥𝐴𝐹𝑥) ∈ V) |
4 | uniexg 7730 | . . . 4 ⊢ (ran 𝐹 ∈ 𝑉 → ∪ ran 𝐹 ∈ V) | |
5 | 4 | pwexd 5378 | . . 3 ⊢ (ran 𝐹 ∈ 𝑉 → 𝒫 ∪ ran 𝐹 ∈ V) |
6 | 3, 5 | ifcld 4575 | . 2 ⊢ (ran 𝐹 ∈ 𝑉 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) ∈ V) |
7 | 1, 6 | eqeltrid 2838 | 1 ⊢ (ran 𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3475 ifcif 4529 𝒫 cpw 4603 ∪ cuni 4909 class class class wbr 5149 ran crn 5678 ℩cio 6494 defAt wdfat 45824 ''''cafv2 45916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-uni 4910 df-iota 6496 df-afv2 45917 |
This theorem is referenced by: fexafv2ex 45928 fcdmvafv2v 45944 |
Copyright terms: Public domain | W3C validator |