Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2ex | Structured version Visualization version GIF version |
Description: The alternate function value is always a set if the range of the function is a set. (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
afv2ex | ⊢ (ran 𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-afv2 44588 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
2 | iotaex 6398 | . . . 4 ⊢ (℩𝑥𝐴𝐹𝑥) ∈ V | |
3 | 2 | a1i 11 | . . 3 ⊢ (ran 𝐹 ∈ 𝑉 → (℩𝑥𝐴𝐹𝑥) ∈ V) |
4 | uniexg 7571 | . . . 4 ⊢ (ran 𝐹 ∈ 𝑉 → ∪ ran 𝐹 ∈ V) | |
5 | 4 | pwexd 5297 | . . 3 ⊢ (ran 𝐹 ∈ 𝑉 → 𝒫 ∪ ran 𝐹 ∈ V) |
6 | 3, 5 | ifcld 4502 | . 2 ⊢ (ran 𝐹 ∈ 𝑉 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) ∈ V) |
7 | 1, 6 | eqeltrid 2843 | 1 ⊢ (ran 𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ifcif 4456 𝒫 cpw 4530 ∪ cuni 4836 class class class wbr 5070 ran crn 5581 ℩cio 6374 defAt wdfat 44495 ''''cafv2 44587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-afv2 44588 |
This theorem is referenced by: fexafv2ex 44599 frnvafv2v 44615 |
Copyright terms: Public domain | W3C validator |