Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2ex Structured version   Visualization version   GIF version

Theorem afv2ex 47244
Description: The alternate function value is always a set if the range of the function is a set. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
afv2ex (ran 𝐹𝑉 → (𝐹''''𝐴) ∈ V)

Proof of Theorem afv2ex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 47239 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
2 iotaex 6457 . . . 4 (℩𝑥𝐴𝐹𝑥) ∈ V
32a1i 11 . . 3 (ran 𝐹𝑉 → (℩𝑥𝐴𝐹𝑥) ∈ V)
4 uniexg 7673 . . . 4 (ran 𝐹𝑉 ran 𝐹 ∈ V)
54pwexd 5317 . . 3 (ran 𝐹𝑉 → 𝒫 ran 𝐹 ∈ V)
63, 5ifcld 4522 . 2 (ran 𝐹𝑉 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) ∈ V)
71, 6eqeltrid 2835 1 (ran 𝐹𝑉 → (𝐹''''𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  ifcif 4475  𝒫 cpw 4550   cuni 4859   class class class wbr 5091  ran crn 5617  cio 6435   defAt wdfat 47146  ''''cafv2 47238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-uni 4860  df-iota 6437  df-afv2 47239
This theorem is referenced by:  fexafv2ex  47250  fcdmvafv2v  47266
  Copyright terms: Public domain W3C validator