| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2ex | Structured version Visualization version GIF version | ||
| Description: The alternate function value is always a set if the range of the function is a set. (Contributed by AV, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| afv2ex | ⊢ (ran 𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-afv2 47180 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
| 2 | iotaex 6492 | . . . 4 ⊢ (℩𝑥𝐴𝐹𝑥) ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (ran 𝐹 ∈ 𝑉 → (℩𝑥𝐴𝐹𝑥) ∈ V) |
| 4 | uniexg 7723 | . . . 4 ⊢ (ran 𝐹 ∈ 𝑉 → ∪ ran 𝐹 ∈ V) | |
| 5 | 4 | pwexd 5342 | . . 3 ⊢ (ran 𝐹 ∈ 𝑉 → 𝒫 ∪ ran 𝐹 ∈ V) |
| 6 | 3, 5 | ifcld 4543 | . 2 ⊢ (ran 𝐹 ∈ 𝑉 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) ∈ V) |
| 7 | 1, 6 | eqeltrid 2833 | 1 ⊢ (ran 𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3455 ifcif 4496 𝒫 cpw 4571 ∪ cuni 4879 class class class wbr 5115 ran crn 5647 ℩cio 6470 defAt wdfat 47087 ''''cafv2 47179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-uni 4880 df-iota 6472 df-afv2 47180 |
| This theorem is referenced by: fexafv2ex 47191 fcdmvafv2v 47207 |
| Copyright terms: Public domain | W3C validator |