Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2ex Structured version   Visualization version   GIF version

Theorem afv2ex 47192
Description: The alternate function value is always a set if the range of the function is a set. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
afv2ex (ran 𝐹𝑉 → (𝐹''''𝐴) ∈ V)

Proof of Theorem afv2ex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 47187 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
2 iotaex 6542 . . . 4 (℩𝑥𝐴𝐹𝑥) ∈ V
32a1i 11 . . 3 (ran 𝐹𝑉 → (℩𝑥𝐴𝐹𝑥) ∈ V)
4 uniexg 7766 . . . 4 (ran 𝐹𝑉 ran 𝐹 ∈ V)
54pwexd 5388 . . 3 (ran 𝐹𝑉 → 𝒫 ran 𝐹 ∈ V)
63, 5ifcld 4580 . 2 (ran 𝐹𝑉 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) ∈ V)
71, 6eqeltrid 2845 1 (ran 𝐹𝑉 → (𝐹''''𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3481  ifcif 4534  𝒫 cpw 4608   cuni 4915   class class class wbr 5151  ran crn 5694  cio 6520   defAt wdfat 47094  ''''cafv2 47186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-uni 4916  df-iota 6522  df-afv2 47187
This theorem is referenced by:  fexafv2ex  47198  fcdmvafv2v  47214
  Copyright terms: Public domain W3C validator