Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglb2 Structured version   Visualization version   GIF version

Theorem dihglb2 41331
Description: Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.)
Hypotheses
Ref Expression
dihglb.b 𝐵 = (Base‘𝐾)
dihglb.g 𝐺 = (glb‘𝐾)
dihglb.h 𝐻 = (LHyp‘𝐾)
dihglb.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihglb2.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihglb2.v 𝑉 = (Base‘𝑈)
Assertion
Ref Expression
dihglb2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (𝐼‘(𝐺‘{𝑥𝐵𝑆 ⊆ (𝐼𝑥)})) = {𝑦 ∈ ran 𝐼𝑆𝑦})
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝐾   𝑥,𝑆,𝑦   𝑦,𝐵   𝑦,𝐻   𝑦,𝐼   𝑦,𝐾   𝑦,𝑆   𝑦,𝑉   𝑦,𝑊
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem dihglb2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 ssrab2 4031 . . . 4 {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ⊆ 𝐵
32a1i 11 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ⊆ 𝐵)
4 hlop 39351 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
54ad2antrr 726 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → 𝐾 ∈ OP)
6 dihglb.b . . . . . . 7 𝐵 = (Base‘𝐾)
7 eqid 2729 . . . . . . 7 (1.‘𝐾) = (1.‘𝐾)
86, 7op1cl 39174 . . . . . 6 (𝐾 ∈ OP → (1.‘𝐾) ∈ 𝐵)
95, 8syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (1.‘𝐾) ∈ 𝐵)
10 simpr 484 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → 𝑆𝑉)
11 dihglb.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
12 dihglb.i . . . . . . . 8 𝐼 = ((DIsoH‘𝐾)‘𝑊)
13 dihglb2.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
14 dihglb2.v . . . . . . . 8 𝑉 = (Base‘𝑈)
157, 11, 12, 13, 14dih1 41275 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼‘(1.‘𝐾)) = 𝑉)
1615adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (𝐼‘(1.‘𝐾)) = 𝑉)
1710, 16sseqtrrd 3973 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → 𝑆 ⊆ (𝐼‘(1.‘𝐾)))
18 fveq2 6822 . . . . . . 7 (𝑥 = (1.‘𝐾) → (𝐼𝑥) = (𝐼‘(1.‘𝐾)))
1918sseq2d 3968 . . . . . 6 (𝑥 = (1.‘𝐾) → (𝑆 ⊆ (𝐼𝑥) ↔ 𝑆 ⊆ (𝐼‘(1.‘𝐾))))
2019elrab 3648 . . . . 5 ((1.‘𝐾) ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ↔ ((1.‘𝐾) ∈ 𝐵𝑆 ⊆ (𝐼‘(1.‘𝐾))))
219, 17, 20sylanbrc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (1.‘𝐾) ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)})
2221ne0d 4293 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ≠ ∅)
23 dihglb.g . . . 4 𝐺 = (glb‘𝐾)
246, 23, 11, 12dihglb 41330 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ({𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ⊆ 𝐵 ∧ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ≠ ∅)) → (𝐼‘(𝐺‘{𝑥𝐵𝑆 ⊆ (𝐼𝑥)})) = 𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} (𝐼𝑧))
251, 3, 22, 24syl12anc 836 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (𝐼‘(𝐺‘{𝑥𝐵𝑆 ⊆ (𝐼𝑥)})) = 𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} (𝐼𝑧))
26 fvex 6835 . . . 4 (𝐼𝑧) ∈ V
2726dfiin2 4983 . . 3 𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} (𝐼𝑧) = {𝑦 ∣ ∃𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)}𝑦 = (𝐼𝑧)}
286, 11, 12dihfn 41257 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn 𝐵)
2928ad2antrr 726 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) ∧ 𝑆𝑦) → 𝐼 Fn 𝐵)
30 fvelrnb 6883 . . . . . . . . . . 11 (𝐼 Fn 𝐵 → (𝑦 ∈ ran 𝐼 ↔ ∃𝑧𝐵 (𝐼𝑧) = 𝑦))
3129, 30syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) ∧ 𝑆𝑦) → (𝑦 ∈ ran 𝐼 ↔ ∃𝑧𝐵 (𝐼𝑧) = 𝑦))
32 eqcom 2736 . . . . . . . . . . . 12 ((𝐼𝑧) = 𝑦𝑦 = (𝐼𝑧))
3332rexbii 3076 . . . . . . . . . . 11 (∃𝑧𝐵 (𝐼𝑧) = 𝑦 ↔ ∃𝑧𝐵 𝑦 = (𝐼𝑧))
34 df-rex 3054 . . . . . . . . . . 11 (∃𝑧𝐵 𝑦 = (𝐼𝑧) ↔ ∃𝑧(𝑧𝐵𝑦 = (𝐼𝑧)))
3533, 34bitri 275 . . . . . . . . . 10 (∃𝑧𝐵 (𝐼𝑧) = 𝑦 ↔ ∃𝑧(𝑧𝐵𝑦 = (𝐼𝑧)))
3631, 35bitrdi 287 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) ∧ 𝑆𝑦) → (𝑦 ∈ ran 𝐼 ↔ ∃𝑧(𝑧𝐵𝑦 = (𝐼𝑧))))
3736ex 412 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (𝑆𝑦 → (𝑦 ∈ ran 𝐼 ↔ ∃𝑧(𝑧𝐵𝑦 = (𝐼𝑧)))))
3837pm5.32rd 578 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → ((𝑦 ∈ ran 𝐼𝑆𝑦) ↔ (∃𝑧(𝑧𝐵𝑦 = (𝐼𝑧)) ∧ 𝑆𝑦)))
39 df-rex 3054 . . . . . . . 8 (∃𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)}𝑦 = (𝐼𝑧) ↔ ∃𝑧(𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ∧ 𝑦 = (𝐼𝑧)))
40 fveq2 6822 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐼𝑥) = (𝐼𝑧))
4140sseq2d 3968 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑆 ⊆ (𝐼𝑥) ↔ 𝑆 ⊆ (𝐼𝑧)))
4241elrab 3648 . . . . . . . . . . 11 (𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ↔ (𝑧𝐵𝑆 ⊆ (𝐼𝑧)))
4342anbi1i 624 . . . . . . . . . 10 ((𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ∧ 𝑦 = (𝐼𝑧)) ↔ ((𝑧𝐵𝑆 ⊆ (𝐼𝑧)) ∧ 𝑦 = (𝐼𝑧)))
44 sseq2 3962 . . . . . . . . . . . 12 (𝑦 = (𝐼𝑧) → (𝑆𝑦𝑆 ⊆ (𝐼𝑧)))
4544anbi2d 630 . . . . . . . . . . 11 (𝑦 = (𝐼𝑧) → ((𝑧𝐵𝑆𝑦) ↔ (𝑧𝐵𝑆 ⊆ (𝐼𝑧))))
4645pm5.32ri 575 . . . . . . . . . 10 (((𝑧𝐵𝑆𝑦) ∧ 𝑦 = (𝐼𝑧)) ↔ ((𝑧𝐵𝑆 ⊆ (𝐼𝑧)) ∧ 𝑦 = (𝐼𝑧)))
47 an32 646 . . . . . . . . . 10 (((𝑧𝐵𝑆𝑦) ∧ 𝑦 = (𝐼𝑧)) ↔ ((𝑧𝐵𝑦 = (𝐼𝑧)) ∧ 𝑆𝑦))
4843, 46, 473bitr2i 299 . . . . . . . . 9 ((𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ∧ 𝑦 = (𝐼𝑧)) ↔ ((𝑧𝐵𝑦 = (𝐼𝑧)) ∧ 𝑆𝑦))
4948exbii 1848 . . . . . . . 8 (∃𝑧(𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ∧ 𝑦 = (𝐼𝑧)) ↔ ∃𝑧((𝑧𝐵𝑦 = (𝐼𝑧)) ∧ 𝑆𝑦))
50 19.41v 1949 . . . . . . . 8 (∃𝑧((𝑧𝐵𝑦 = (𝐼𝑧)) ∧ 𝑆𝑦) ↔ (∃𝑧(𝑧𝐵𝑦 = (𝐼𝑧)) ∧ 𝑆𝑦))
5139, 49, 503bitrri 298 . . . . . . 7 ((∃𝑧(𝑧𝐵𝑦 = (𝐼𝑧)) ∧ 𝑆𝑦) ↔ ∃𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)}𝑦 = (𝐼𝑧))
5238, 51bitr2di 288 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (∃𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)}𝑦 = (𝐼𝑧) ↔ (𝑦 ∈ ran 𝐼𝑆𝑦)))
5352abbidv 2795 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → {𝑦 ∣ ∃𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)}𝑦 = (𝐼𝑧)} = {𝑦 ∣ (𝑦 ∈ ran 𝐼𝑆𝑦)})
54 df-rab 3395 . . . . 5 {𝑦 ∈ ran 𝐼𝑆𝑦} = {𝑦 ∣ (𝑦 ∈ ran 𝐼𝑆𝑦)}
5553, 54eqtr4di 2782 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → {𝑦 ∣ ∃𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)}𝑦 = (𝐼𝑧)} = {𝑦 ∈ ran 𝐼𝑆𝑦})
5655inteqd 4901 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → {𝑦 ∣ ∃𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)}𝑦 = (𝐼𝑧)} = {𝑦 ∈ ran 𝐼𝑆𝑦})
5727, 56eqtrid 2776 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → 𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} (𝐼𝑧) = {𝑦 ∈ ran 𝐼𝑆𝑦})
5825, 57eqtrd 2764 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (𝐼‘(𝐺‘{𝑥𝐵𝑆 ⊆ (𝐼𝑥)})) = {𝑦 ∈ ran 𝐼𝑆𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wrex 3053  {crab 3394  wss 3903  c0 4284   cint 4896   ciin 4942  ran crn 5620   Fn wfn 6477  cfv 6482  Basecbs 17120  glbcglb 18216  1.cp1 18328  OPcops 39161  HLchlt 39339  LHypclh 39973  DVecHcdvh 41067  DIsoHcdih 41217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-riotaBAD 38942
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-undef 8206  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cntz 19196  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lvec 21007  df-lsatoms 38965  df-oposet 39165  df-ol 39167  df-oml 39168  df-covers 39255  df-ats 39256  df-atl 39287  df-cvlat 39311  df-hlat 39340  df-llines 39487  df-lplanes 39488  df-lvols 39489  df-lines 39490  df-psubsp 39492  df-pmap 39493  df-padd 39785  df-lhyp 39977  df-laut 39978  df-ldil 40093  df-ltrn 40094  df-trl 40148  df-tendo 40744  df-edring 40746  df-disoa 41018  df-dvech 41068  df-dib 41128  df-dic 41162  df-dih 41218
This theorem is referenced by:  dochval2  41341
  Copyright terms: Public domain W3C validator