Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | ssrab2 4009 |
. . . 4
⊢ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ⊆ 𝐵 |
3 | 2 | a1i 11 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ⊆ 𝐵) |
4 | | hlop 37303 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
5 | 4 | ad2antrr 722 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → 𝐾 ∈ OP) |
6 | | dihglb.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
7 | | eqid 2738 |
. . . . . . 7
⊢
(1.‘𝐾) =
(1.‘𝐾) |
8 | 6, 7 | op1cl 37126 |
. . . . . 6
⊢ (𝐾 ∈ OP →
(1.‘𝐾) ∈ 𝐵) |
9 | 5, 8 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → (1.‘𝐾) ∈ 𝐵) |
10 | | simpr 484 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ 𝑉) |
11 | | dihglb.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
12 | | dihglb.i |
. . . . . . . 8
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
13 | | dihglb2.u |
. . . . . . . 8
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
14 | | dihglb2.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑈) |
15 | 7, 11, 12, 13, 14 | dih1 39227 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘(1.‘𝐾)) = 𝑉) |
16 | 15 | adantr 480 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → (𝐼‘(1.‘𝐾)) = 𝑉) |
17 | 10, 16 | sseqtrrd 3958 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ (𝐼‘(1.‘𝐾))) |
18 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = (1.‘𝐾) → (𝐼‘𝑥) = (𝐼‘(1.‘𝐾))) |
19 | 18 | sseq2d 3949 |
. . . . . 6
⊢ (𝑥 = (1.‘𝐾) → (𝑆 ⊆ (𝐼‘𝑥) ↔ 𝑆 ⊆ (𝐼‘(1.‘𝐾)))) |
20 | 19 | elrab 3617 |
. . . . 5
⊢
((1.‘𝐾) ∈
{𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ↔ ((1.‘𝐾) ∈ 𝐵 ∧ 𝑆 ⊆ (𝐼‘(1.‘𝐾)))) |
21 | 9, 17, 20 | sylanbrc 582 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → (1.‘𝐾) ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)}) |
22 | 21 | ne0d 4266 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ≠ ∅) |
23 | | dihglb.g |
. . . 4
⊢ 𝐺 = (glb‘𝐾) |
24 | 6, 23, 11, 12 | dihglb 39282 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ({𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ⊆ 𝐵 ∧ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ≠ ∅)) → (𝐼‘(𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)})) = ∩
𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} (𝐼‘𝑧)) |
25 | 1, 3, 22, 24 | syl12anc 833 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → (𝐼‘(𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)})) = ∩
𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} (𝐼‘𝑧)) |
26 | | fvex 6769 |
. . . 4
⊢ (𝐼‘𝑧) ∈ V |
27 | 26 | dfiin2 4960 |
. . 3
⊢ ∩ 𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} (𝐼‘𝑧) = ∩ {𝑦 ∣ ∃𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)}𝑦 = (𝐼‘𝑧)} |
28 | 6, 11, 12 | dihfn 39209 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn 𝐵) |
29 | 28 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) ∧ 𝑆 ⊆ 𝑦) → 𝐼 Fn 𝐵) |
30 | | fvelrnb 6812 |
. . . . . . . . . . 11
⊢ (𝐼 Fn 𝐵 → (𝑦 ∈ ran 𝐼 ↔ ∃𝑧 ∈ 𝐵 (𝐼‘𝑧) = 𝑦)) |
31 | 29, 30 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) ∧ 𝑆 ⊆ 𝑦) → (𝑦 ∈ ran 𝐼 ↔ ∃𝑧 ∈ 𝐵 (𝐼‘𝑧) = 𝑦)) |
32 | | eqcom 2745 |
. . . . . . . . . . . 12
⊢ ((𝐼‘𝑧) = 𝑦 ↔ 𝑦 = (𝐼‘𝑧)) |
33 | 32 | rexbii 3177 |
. . . . . . . . . . 11
⊢
(∃𝑧 ∈
𝐵 (𝐼‘𝑧) = 𝑦 ↔ ∃𝑧 ∈ 𝐵 𝑦 = (𝐼‘𝑧)) |
34 | | df-rex 3069 |
. . . . . . . . . . 11
⊢
(∃𝑧 ∈
𝐵 𝑦 = (𝐼‘𝑧) ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧))) |
35 | 33, 34 | bitri 274 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
𝐵 (𝐼‘𝑧) = 𝑦 ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧))) |
36 | 31, 35 | bitrdi 286 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) ∧ 𝑆 ⊆ 𝑦) → (𝑦 ∈ ran 𝐼 ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧)))) |
37 | 36 | ex 412 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → (𝑆 ⊆ 𝑦 → (𝑦 ∈ ran 𝐼 ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧))))) |
38 | 37 | pm5.32rd 577 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → ((𝑦 ∈ ran 𝐼 ∧ 𝑆 ⊆ 𝑦) ↔ (∃𝑧(𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧)) ∧ 𝑆 ⊆ 𝑦))) |
39 | | df-rex 3069 |
. . . . . . . 8
⊢
(∃𝑧 ∈
{𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)}𝑦 = (𝐼‘𝑧) ↔ ∃𝑧(𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ∧ 𝑦 = (𝐼‘𝑧))) |
40 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝐼‘𝑥) = (𝐼‘𝑧)) |
41 | 40 | sseq2d 3949 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑆 ⊆ (𝐼‘𝑥) ↔ 𝑆 ⊆ (𝐼‘𝑧))) |
42 | 41 | elrab 3617 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ↔ (𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ (𝐼‘𝑧))) |
43 | 42 | anbi1i 623 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ∧ 𝑦 = (𝐼‘𝑧)) ↔ ((𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ (𝐼‘𝑧)) ∧ 𝑦 = (𝐼‘𝑧))) |
44 | | sseq2 3943 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐼‘𝑧) → (𝑆 ⊆ 𝑦 ↔ 𝑆 ⊆ (𝐼‘𝑧))) |
45 | 44 | anbi2d 628 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐼‘𝑧) → ((𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ 𝑦) ↔ (𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ (𝐼‘𝑧)))) |
46 | 45 | pm5.32ri 575 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ 𝑦) ∧ 𝑦 = (𝐼‘𝑧)) ↔ ((𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ (𝐼‘𝑧)) ∧ 𝑦 = (𝐼‘𝑧))) |
47 | | an32 642 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ 𝑦) ∧ 𝑦 = (𝐼‘𝑧)) ↔ ((𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧)) ∧ 𝑆 ⊆ 𝑦)) |
48 | 43, 46, 47 | 3bitr2i 298 |
. . . . . . . . 9
⊢ ((𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ∧ 𝑦 = (𝐼‘𝑧)) ↔ ((𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧)) ∧ 𝑆 ⊆ 𝑦)) |
49 | 48 | exbii 1851 |
. . . . . . . 8
⊢
(∃𝑧(𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ∧ 𝑦 = (𝐼‘𝑧)) ↔ ∃𝑧((𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧)) ∧ 𝑆 ⊆ 𝑦)) |
50 | | 19.41v 1954 |
. . . . . . . 8
⊢
(∃𝑧((𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧)) ∧ 𝑆 ⊆ 𝑦) ↔ (∃𝑧(𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧)) ∧ 𝑆 ⊆ 𝑦)) |
51 | 39, 49, 50 | 3bitrri 297 |
. . . . . . 7
⊢
((∃𝑧(𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧)) ∧ 𝑆 ⊆ 𝑦) ↔ ∃𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)}𝑦 = (𝐼‘𝑧)) |
52 | 38, 51 | bitr2di 287 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → (∃𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)}𝑦 = (𝐼‘𝑧) ↔ (𝑦 ∈ ran 𝐼 ∧ 𝑆 ⊆ 𝑦))) |
53 | 52 | abbidv 2808 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → {𝑦 ∣ ∃𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)}𝑦 = (𝐼‘𝑧)} = {𝑦 ∣ (𝑦 ∈ ran 𝐼 ∧ 𝑆 ⊆ 𝑦)}) |
54 | | df-rab 3072 |
. . . . 5
⊢ {𝑦 ∈ ran 𝐼 ∣ 𝑆 ⊆ 𝑦} = {𝑦 ∣ (𝑦 ∈ ran 𝐼 ∧ 𝑆 ⊆ 𝑦)} |
55 | 53, 54 | eqtr4di 2797 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → {𝑦 ∣ ∃𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)}𝑦 = (𝐼‘𝑧)} = {𝑦 ∈ ran 𝐼 ∣ 𝑆 ⊆ 𝑦}) |
56 | 55 | inteqd 4881 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → ∩ {𝑦 ∣ ∃𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)}𝑦 = (𝐼‘𝑧)} = ∩ {𝑦 ∈ ran 𝐼 ∣ 𝑆 ⊆ 𝑦}) |
57 | 27, 56 | syl5eq 2791 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → ∩
𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} (𝐼‘𝑧) = ∩ {𝑦 ∈ ran 𝐼 ∣ 𝑆 ⊆ 𝑦}) |
58 | 25, 57 | eqtrd 2778 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → (𝐼‘(𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)})) = ∩ {𝑦 ∈ ran 𝐼 ∣ 𝑆 ⊆ 𝑦}) |