| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl 482 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | ssrab2 4080 | . . . 4
⊢ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ⊆ 𝐵 | 
| 3 | 2 | a1i 11 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ⊆ 𝐵) | 
| 4 |  | hlop 39363 | . . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | 
| 5 | 4 | ad2antrr 726 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → 𝐾 ∈ OP) | 
| 6 |  | dihglb.b | . . . . . . 7
⊢ 𝐵 = (Base‘𝐾) | 
| 7 |  | eqid 2737 | . . . . . . 7
⊢
(1.‘𝐾) =
(1.‘𝐾) | 
| 8 | 6, 7 | op1cl 39186 | . . . . . 6
⊢ (𝐾 ∈ OP →
(1.‘𝐾) ∈ 𝐵) | 
| 9 | 5, 8 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → (1.‘𝐾) ∈ 𝐵) | 
| 10 |  | simpr 484 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ 𝑉) | 
| 11 |  | dihglb.h | . . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) | 
| 12 |  | dihglb.i | . . . . . . . 8
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | 
| 13 |  | dihglb2.u | . . . . . . . 8
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 14 |  | dihglb2.v | . . . . . . . 8
⊢ 𝑉 = (Base‘𝑈) | 
| 15 | 7, 11, 12, 13, 14 | dih1 41288 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘(1.‘𝐾)) = 𝑉) | 
| 16 | 15 | adantr 480 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → (𝐼‘(1.‘𝐾)) = 𝑉) | 
| 17 | 10, 16 | sseqtrrd 4021 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ (𝐼‘(1.‘𝐾))) | 
| 18 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑥 = (1.‘𝐾) → (𝐼‘𝑥) = (𝐼‘(1.‘𝐾))) | 
| 19 | 18 | sseq2d 4016 | . . . . . 6
⊢ (𝑥 = (1.‘𝐾) → (𝑆 ⊆ (𝐼‘𝑥) ↔ 𝑆 ⊆ (𝐼‘(1.‘𝐾)))) | 
| 20 | 19 | elrab 3692 | . . . . 5
⊢
((1.‘𝐾) ∈
{𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ↔ ((1.‘𝐾) ∈ 𝐵 ∧ 𝑆 ⊆ (𝐼‘(1.‘𝐾)))) | 
| 21 | 9, 17, 20 | sylanbrc 583 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → (1.‘𝐾) ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)}) | 
| 22 | 21 | ne0d 4342 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ≠ ∅) | 
| 23 |  | dihglb.g | . . . 4
⊢ 𝐺 = (glb‘𝐾) | 
| 24 | 6, 23, 11, 12 | dihglb 41343 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ({𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ⊆ 𝐵 ∧ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ≠ ∅)) → (𝐼‘(𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)})) = ∩
𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} (𝐼‘𝑧)) | 
| 25 | 1, 3, 22, 24 | syl12anc 837 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → (𝐼‘(𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)})) = ∩
𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} (𝐼‘𝑧)) | 
| 26 |  | fvex 6919 | . . . 4
⊢ (𝐼‘𝑧) ∈ V | 
| 27 | 26 | dfiin2 5034 | . . 3
⊢ ∩ 𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} (𝐼‘𝑧) = ∩ {𝑦 ∣ ∃𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)}𝑦 = (𝐼‘𝑧)} | 
| 28 | 6, 11, 12 | dihfn 41270 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn 𝐵) | 
| 29 | 28 | ad2antrr 726 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) ∧ 𝑆 ⊆ 𝑦) → 𝐼 Fn 𝐵) | 
| 30 |  | fvelrnb 6969 | . . . . . . . . . . 11
⊢ (𝐼 Fn 𝐵 → (𝑦 ∈ ran 𝐼 ↔ ∃𝑧 ∈ 𝐵 (𝐼‘𝑧) = 𝑦)) | 
| 31 | 29, 30 | syl 17 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) ∧ 𝑆 ⊆ 𝑦) → (𝑦 ∈ ran 𝐼 ↔ ∃𝑧 ∈ 𝐵 (𝐼‘𝑧) = 𝑦)) | 
| 32 |  | eqcom 2744 | . . . . . . . . . . . 12
⊢ ((𝐼‘𝑧) = 𝑦 ↔ 𝑦 = (𝐼‘𝑧)) | 
| 33 | 32 | rexbii 3094 | . . . . . . . . . . 11
⊢
(∃𝑧 ∈
𝐵 (𝐼‘𝑧) = 𝑦 ↔ ∃𝑧 ∈ 𝐵 𝑦 = (𝐼‘𝑧)) | 
| 34 |  | df-rex 3071 | . . . . . . . . . . 11
⊢
(∃𝑧 ∈
𝐵 𝑦 = (𝐼‘𝑧) ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧))) | 
| 35 | 33, 34 | bitri 275 | . . . . . . . . . 10
⊢
(∃𝑧 ∈
𝐵 (𝐼‘𝑧) = 𝑦 ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧))) | 
| 36 | 31, 35 | bitrdi 287 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) ∧ 𝑆 ⊆ 𝑦) → (𝑦 ∈ ran 𝐼 ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧)))) | 
| 37 | 36 | ex 412 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → (𝑆 ⊆ 𝑦 → (𝑦 ∈ ran 𝐼 ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧))))) | 
| 38 | 37 | pm5.32rd 578 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → ((𝑦 ∈ ran 𝐼 ∧ 𝑆 ⊆ 𝑦) ↔ (∃𝑧(𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧)) ∧ 𝑆 ⊆ 𝑦))) | 
| 39 |  | df-rex 3071 | . . . . . . . 8
⊢
(∃𝑧 ∈
{𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)}𝑦 = (𝐼‘𝑧) ↔ ∃𝑧(𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ∧ 𝑦 = (𝐼‘𝑧))) | 
| 40 |  | fveq2 6906 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝐼‘𝑥) = (𝐼‘𝑧)) | 
| 41 | 40 | sseq2d 4016 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑆 ⊆ (𝐼‘𝑥) ↔ 𝑆 ⊆ (𝐼‘𝑧))) | 
| 42 | 41 | elrab 3692 | . . . . . . . . . . 11
⊢ (𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ↔ (𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ (𝐼‘𝑧))) | 
| 43 | 42 | anbi1i 624 | . . . . . . . . . 10
⊢ ((𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ∧ 𝑦 = (𝐼‘𝑧)) ↔ ((𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ (𝐼‘𝑧)) ∧ 𝑦 = (𝐼‘𝑧))) | 
| 44 |  | sseq2 4010 | . . . . . . . . . . . 12
⊢ (𝑦 = (𝐼‘𝑧) → (𝑆 ⊆ 𝑦 ↔ 𝑆 ⊆ (𝐼‘𝑧))) | 
| 45 | 44 | anbi2d 630 | . . . . . . . . . . 11
⊢ (𝑦 = (𝐼‘𝑧) → ((𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ 𝑦) ↔ (𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ (𝐼‘𝑧)))) | 
| 46 | 45 | pm5.32ri 575 | . . . . . . . . . 10
⊢ (((𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ 𝑦) ∧ 𝑦 = (𝐼‘𝑧)) ↔ ((𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ (𝐼‘𝑧)) ∧ 𝑦 = (𝐼‘𝑧))) | 
| 47 |  | an32 646 | . . . . . . . . . 10
⊢ (((𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ 𝑦) ∧ 𝑦 = (𝐼‘𝑧)) ↔ ((𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧)) ∧ 𝑆 ⊆ 𝑦)) | 
| 48 | 43, 46, 47 | 3bitr2i 299 | . . . . . . . . 9
⊢ ((𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ∧ 𝑦 = (𝐼‘𝑧)) ↔ ((𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧)) ∧ 𝑆 ⊆ 𝑦)) | 
| 49 | 48 | exbii 1848 | . . . . . . . 8
⊢
(∃𝑧(𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} ∧ 𝑦 = (𝐼‘𝑧)) ↔ ∃𝑧((𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧)) ∧ 𝑆 ⊆ 𝑦)) | 
| 50 |  | 19.41v 1949 | . . . . . . . 8
⊢
(∃𝑧((𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧)) ∧ 𝑆 ⊆ 𝑦) ↔ (∃𝑧(𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧)) ∧ 𝑆 ⊆ 𝑦)) | 
| 51 | 39, 49, 50 | 3bitrri 298 | . . . . . . 7
⊢
((∃𝑧(𝑧 ∈ 𝐵 ∧ 𝑦 = (𝐼‘𝑧)) ∧ 𝑆 ⊆ 𝑦) ↔ ∃𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)}𝑦 = (𝐼‘𝑧)) | 
| 52 | 38, 51 | bitr2di 288 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → (∃𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)}𝑦 = (𝐼‘𝑧) ↔ (𝑦 ∈ ran 𝐼 ∧ 𝑆 ⊆ 𝑦))) | 
| 53 | 52 | abbidv 2808 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → {𝑦 ∣ ∃𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)}𝑦 = (𝐼‘𝑧)} = {𝑦 ∣ (𝑦 ∈ ran 𝐼 ∧ 𝑆 ⊆ 𝑦)}) | 
| 54 |  | df-rab 3437 | . . . . 5
⊢ {𝑦 ∈ ran 𝐼 ∣ 𝑆 ⊆ 𝑦} = {𝑦 ∣ (𝑦 ∈ ran 𝐼 ∧ 𝑆 ⊆ 𝑦)} | 
| 55 | 53, 54 | eqtr4di 2795 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → {𝑦 ∣ ∃𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)}𝑦 = (𝐼‘𝑧)} = {𝑦 ∈ ran 𝐼 ∣ 𝑆 ⊆ 𝑦}) | 
| 56 | 55 | inteqd 4951 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → ∩ {𝑦 ∣ ∃𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)}𝑦 = (𝐼‘𝑧)} = ∩ {𝑦 ∈ ran 𝐼 ∣ 𝑆 ⊆ 𝑦}) | 
| 57 | 27, 56 | eqtrid 2789 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → ∩
𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)} (𝐼‘𝑧) = ∩ {𝑦 ∈ ran 𝐼 ∣ 𝑆 ⊆ 𝑦}) | 
| 58 | 25, 57 | eqtrd 2777 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → (𝐼‘(𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)})) = ∩ {𝑦 ∈ ran 𝐼 ∣ 𝑆 ⊆ 𝑦}) |