Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglb2 Structured version   Visualization version   GIF version

Theorem dihglb2 39805
Description: Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.)
Hypotheses
Ref Expression
dihglb.b 𝐵 = (Base‘𝐾)
dihglb.g 𝐺 = (glb‘𝐾)
dihglb.h 𝐻 = (LHyp‘𝐾)
dihglb.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihglb2.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihglb2.v 𝑉 = (Base‘𝑈)
Assertion
Ref Expression
dihglb2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (𝐼‘(𝐺‘{𝑥𝐵𝑆 ⊆ (𝐼𝑥)})) = {𝑦 ∈ ran 𝐼𝑆𝑦})
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝐾   𝑥,𝑆,𝑦   𝑦,𝐵   𝑦,𝐻   𝑦,𝐼   𝑦,𝐾   𝑦,𝑆   𝑦,𝑉   𝑦,𝑊
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem dihglb2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 ssrab2 4037 . . . 4 {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ⊆ 𝐵
32a1i 11 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ⊆ 𝐵)
4 hlop 37824 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
54ad2antrr 724 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → 𝐾 ∈ OP)
6 dihglb.b . . . . . . 7 𝐵 = (Base‘𝐾)
7 eqid 2736 . . . . . . 7 (1.‘𝐾) = (1.‘𝐾)
86, 7op1cl 37647 . . . . . 6 (𝐾 ∈ OP → (1.‘𝐾) ∈ 𝐵)
95, 8syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (1.‘𝐾) ∈ 𝐵)
10 simpr 485 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → 𝑆𝑉)
11 dihglb.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
12 dihglb.i . . . . . . . 8 𝐼 = ((DIsoH‘𝐾)‘𝑊)
13 dihglb2.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
14 dihglb2.v . . . . . . . 8 𝑉 = (Base‘𝑈)
157, 11, 12, 13, 14dih1 39749 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼‘(1.‘𝐾)) = 𝑉)
1615adantr 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (𝐼‘(1.‘𝐾)) = 𝑉)
1710, 16sseqtrrd 3985 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → 𝑆 ⊆ (𝐼‘(1.‘𝐾)))
18 fveq2 6842 . . . . . . 7 (𝑥 = (1.‘𝐾) → (𝐼𝑥) = (𝐼‘(1.‘𝐾)))
1918sseq2d 3976 . . . . . 6 (𝑥 = (1.‘𝐾) → (𝑆 ⊆ (𝐼𝑥) ↔ 𝑆 ⊆ (𝐼‘(1.‘𝐾))))
2019elrab 3645 . . . . 5 ((1.‘𝐾) ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ↔ ((1.‘𝐾) ∈ 𝐵𝑆 ⊆ (𝐼‘(1.‘𝐾))))
219, 17, 20sylanbrc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (1.‘𝐾) ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)})
2221ne0d 4295 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ≠ ∅)
23 dihglb.g . . . 4 𝐺 = (glb‘𝐾)
246, 23, 11, 12dihglb 39804 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ({𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ⊆ 𝐵 ∧ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ≠ ∅)) → (𝐼‘(𝐺‘{𝑥𝐵𝑆 ⊆ (𝐼𝑥)})) = 𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} (𝐼𝑧))
251, 3, 22, 24syl12anc 835 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (𝐼‘(𝐺‘{𝑥𝐵𝑆 ⊆ (𝐼𝑥)})) = 𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} (𝐼𝑧))
26 fvex 6855 . . . 4 (𝐼𝑧) ∈ V
2726dfiin2 4994 . . 3 𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} (𝐼𝑧) = {𝑦 ∣ ∃𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)}𝑦 = (𝐼𝑧)}
286, 11, 12dihfn 39731 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn 𝐵)
2928ad2antrr 724 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) ∧ 𝑆𝑦) → 𝐼 Fn 𝐵)
30 fvelrnb 6903 . . . . . . . . . . 11 (𝐼 Fn 𝐵 → (𝑦 ∈ ran 𝐼 ↔ ∃𝑧𝐵 (𝐼𝑧) = 𝑦))
3129, 30syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) ∧ 𝑆𝑦) → (𝑦 ∈ ran 𝐼 ↔ ∃𝑧𝐵 (𝐼𝑧) = 𝑦))
32 eqcom 2743 . . . . . . . . . . . 12 ((𝐼𝑧) = 𝑦𝑦 = (𝐼𝑧))
3332rexbii 3097 . . . . . . . . . . 11 (∃𝑧𝐵 (𝐼𝑧) = 𝑦 ↔ ∃𝑧𝐵 𝑦 = (𝐼𝑧))
34 df-rex 3074 . . . . . . . . . . 11 (∃𝑧𝐵 𝑦 = (𝐼𝑧) ↔ ∃𝑧(𝑧𝐵𝑦 = (𝐼𝑧)))
3533, 34bitri 274 . . . . . . . . . 10 (∃𝑧𝐵 (𝐼𝑧) = 𝑦 ↔ ∃𝑧(𝑧𝐵𝑦 = (𝐼𝑧)))
3631, 35bitrdi 286 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) ∧ 𝑆𝑦) → (𝑦 ∈ ran 𝐼 ↔ ∃𝑧(𝑧𝐵𝑦 = (𝐼𝑧))))
3736ex 413 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (𝑆𝑦 → (𝑦 ∈ ran 𝐼 ↔ ∃𝑧(𝑧𝐵𝑦 = (𝐼𝑧)))))
3837pm5.32rd 578 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → ((𝑦 ∈ ran 𝐼𝑆𝑦) ↔ (∃𝑧(𝑧𝐵𝑦 = (𝐼𝑧)) ∧ 𝑆𝑦)))
39 df-rex 3074 . . . . . . . 8 (∃𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)}𝑦 = (𝐼𝑧) ↔ ∃𝑧(𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ∧ 𝑦 = (𝐼𝑧)))
40 fveq2 6842 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐼𝑥) = (𝐼𝑧))
4140sseq2d 3976 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑆 ⊆ (𝐼𝑥) ↔ 𝑆 ⊆ (𝐼𝑧)))
4241elrab 3645 . . . . . . . . . . 11 (𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ↔ (𝑧𝐵𝑆 ⊆ (𝐼𝑧)))
4342anbi1i 624 . . . . . . . . . 10 ((𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ∧ 𝑦 = (𝐼𝑧)) ↔ ((𝑧𝐵𝑆 ⊆ (𝐼𝑧)) ∧ 𝑦 = (𝐼𝑧)))
44 sseq2 3970 . . . . . . . . . . . 12 (𝑦 = (𝐼𝑧) → (𝑆𝑦𝑆 ⊆ (𝐼𝑧)))
4544anbi2d 629 . . . . . . . . . . 11 (𝑦 = (𝐼𝑧) → ((𝑧𝐵𝑆𝑦) ↔ (𝑧𝐵𝑆 ⊆ (𝐼𝑧))))
4645pm5.32ri 576 . . . . . . . . . 10 (((𝑧𝐵𝑆𝑦) ∧ 𝑦 = (𝐼𝑧)) ↔ ((𝑧𝐵𝑆 ⊆ (𝐼𝑧)) ∧ 𝑦 = (𝐼𝑧)))
47 an32 644 . . . . . . . . . 10 (((𝑧𝐵𝑆𝑦) ∧ 𝑦 = (𝐼𝑧)) ↔ ((𝑧𝐵𝑦 = (𝐼𝑧)) ∧ 𝑆𝑦))
4843, 46, 473bitr2i 298 . . . . . . . . 9 ((𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ∧ 𝑦 = (𝐼𝑧)) ↔ ((𝑧𝐵𝑦 = (𝐼𝑧)) ∧ 𝑆𝑦))
4948exbii 1850 . . . . . . . 8 (∃𝑧(𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} ∧ 𝑦 = (𝐼𝑧)) ↔ ∃𝑧((𝑧𝐵𝑦 = (𝐼𝑧)) ∧ 𝑆𝑦))
50 19.41v 1953 . . . . . . . 8 (∃𝑧((𝑧𝐵𝑦 = (𝐼𝑧)) ∧ 𝑆𝑦) ↔ (∃𝑧(𝑧𝐵𝑦 = (𝐼𝑧)) ∧ 𝑆𝑦))
5139, 49, 503bitrri 297 . . . . . . 7 ((∃𝑧(𝑧𝐵𝑦 = (𝐼𝑧)) ∧ 𝑆𝑦) ↔ ∃𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)}𝑦 = (𝐼𝑧))
5238, 51bitr2di 287 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (∃𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)}𝑦 = (𝐼𝑧) ↔ (𝑦 ∈ ran 𝐼𝑆𝑦)))
5352abbidv 2805 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → {𝑦 ∣ ∃𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)}𝑦 = (𝐼𝑧)} = {𝑦 ∣ (𝑦 ∈ ran 𝐼𝑆𝑦)})
54 df-rab 3408 . . . . 5 {𝑦 ∈ ran 𝐼𝑆𝑦} = {𝑦 ∣ (𝑦 ∈ ran 𝐼𝑆𝑦)}
5553, 54eqtr4di 2794 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → {𝑦 ∣ ∃𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)}𝑦 = (𝐼𝑧)} = {𝑦 ∈ ran 𝐼𝑆𝑦})
5655inteqd 4912 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → {𝑦 ∣ ∃𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)}𝑦 = (𝐼𝑧)} = {𝑦 ∈ ran 𝐼𝑆𝑦})
5727, 56eqtrid 2788 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → 𝑧 ∈ {𝑥𝐵𝑆 ⊆ (𝐼𝑥)} (𝐼𝑧) = {𝑦 ∈ ran 𝐼𝑆𝑦})
5825, 57eqtrd 2776 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝑉) → (𝐼‘(𝐺‘{𝑥𝐵𝑆 ⊆ (𝐼𝑥)})) = {𝑦 ∈ ran 𝐼𝑆𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wne 2943  wrex 3073  {crab 3407  wss 3910  c0 4282   cint 4907   ciin 4955  ran crn 5634   Fn wfn 6491  cfv 6496  Basecbs 17083  glbcglb 18199  1.cp1 18313  OPcops 37634  HLchlt 37812  LHypclh 38447  DVecHcdvh 39541  DIsoHcdih 39691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-undef 8204  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-0g 17323  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564  df-lsatoms 37438  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tendo 39218  df-edring 39220  df-disoa 39492  df-dvech 39542  df-dib 39602  df-dic 39636  df-dih 39692
This theorem is referenced by:  dochval2  39815
  Copyright terms: Public domain W3C validator