MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflim3 Structured version   Visualization version   GIF version

Theorem cflim3 9285
Description: Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013.)
Hypothesis
Ref Expression
cflim3.1 𝐴 ∈ V
Assertion
Ref Expression
cflim3 (Lim 𝐴 → (cf‘𝐴) = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cflim3
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limord 5927 . . . 4 (Lim 𝐴 → Ord 𝐴)
2 cflim3.1 . . . . 5 𝐴 ∈ V
32elon 5875 . . . 4 (𝐴 ∈ On ↔ Ord 𝐴)
41, 3sylibr 224 . . 3 (Lim 𝐴𝐴 ∈ On)
5 cfval 9270 . . 3 (𝐴 ∈ On → (cf‘𝐴) = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))})
64, 5syl 17 . 2 (Lim 𝐴 → (cf‘𝐴) = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))})
7 fvex 6342 . . . 4 (card‘𝑥) ∈ V
87dfiin2 4689 . . 3 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) = {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)}
9 df-rex 3067 . . . . . 6 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ 𝑦 = (card‘𝑥)))
10 ancom 452 . . . . . . . 8 ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ 𝑦 = (card‘𝑥)) ↔ (𝑦 = (card‘𝑥) ∧ 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}))
11 rabid 3264 . . . . . . . . . 10 (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴))
12 selpw 4304 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1312anbi1i 602 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ↔ (𝑥𝐴 𝑥 = 𝐴))
14 coflim 9284 . . . . . . . . . . . 12 ((Lim 𝐴𝑥𝐴) → ( 𝑥 = 𝐴 ↔ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))
1514pm5.32da 560 . . . . . . . . . . 11 (Lim 𝐴 → ((𝑥𝐴 𝑥 = 𝐴) ↔ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤)))
1613, 15syl5bb 272 . . . . . . . . . 10 (Lim 𝐴 → ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ↔ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤)))
1711, 16syl5bb 272 . . . . . . . . 9 (Lim 𝐴 → (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ↔ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤)))
1817anbi2d 606 . . . . . . . 8 (Lim 𝐴 → ((𝑦 = (card‘𝑥) ∧ 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}) ↔ (𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))))
1910, 18syl5bb 272 . . . . . . 7 (Lim 𝐴 → ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ 𝑦 = (card‘𝑥)) ↔ (𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))))
2019exbidv 2002 . . . . . 6 (Lim 𝐴 → (∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ 𝑦 = (card‘𝑥)) ↔ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))))
219, 20syl5bb 272 . . . . 5 (Lim 𝐴 → (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))))
2221abbidv 2890 . . . 4 (Lim 𝐴 → {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))})
2322inteqd 4616 . . 3 (Lim 𝐴 {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))})
248, 23syl5req 2818 . 2 (Lim 𝐴 {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))} = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
256, 24eqtrd 2805 1 (Lim 𝐴 → (cf‘𝐴) = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wex 1852  wcel 2145  {cab 2757  wral 3061  wrex 3062  {crab 3065  Vcvv 3351  wss 3723  𝒫 cpw 4297   cuni 4574   cint 4611   ciin 4655  Ord word 5865  Oncon0 5866  Lim wlim 5867  cfv 6031  cardccrd 8960  cfccf 8962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-int 4612  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-ord 5869  df-on 5870  df-lim 5871  df-iota 5994  df-fun 6033  df-fv 6039  df-cf 8966
This theorem is referenced by:  cflim2  9286  cfss  9288  cfslb  9289
  Copyright terms: Public domain W3C validator