MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflim3 Structured version   Visualization version   GIF version

Theorem cflim3 10164
Description: Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013.)
Hypothesis
Ref Expression
cflim3.1 𝐴 ∈ V
Assertion
Ref Expression
cflim3 (Lim 𝐴 → (cf‘𝐴) = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cflim3
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limord 6375 . . . 4 (Lim 𝐴 → Ord 𝐴)
2 cflim3.1 . . . . 5 𝐴 ∈ V
32elon 6323 . . . 4 (𝐴 ∈ On ↔ Ord 𝐴)
41, 3sylibr 234 . . 3 (Lim 𝐴𝐴 ∈ On)
5 cfval 10149 . . 3 (𝐴 ∈ On → (cf‘𝐴) = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))})
64, 5syl 17 . 2 (Lim 𝐴 → (cf‘𝐴) = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))})
7 fvex 6844 . . . 4 (card‘𝑥) ∈ V
87dfiin2 4985 . . 3 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) = {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)}
9 df-rex 3058 . . . . . 6 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ 𝑦 = (card‘𝑥)))
10 ancom 460 . . . . . . . 8 ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ 𝑦 = (card‘𝑥)) ↔ (𝑦 = (card‘𝑥) ∧ 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}))
11 rabid 3417 . . . . . . . . . 10 (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴))
12 velpw 4556 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1312anbi1i 624 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ↔ (𝑥𝐴 𝑥 = 𝐴))
14 coflim 10163 . . . . . . . . . . . 12 ((Lim 𝐴𝑥𝐴) → ( 𝑥 = 𝐴 ↔ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))
1514pm5.32da 579 . . . . . . . . . . 11 (Lim 𝐴 → ((𝑥𝐴 𝑥 = 𝐴) ↔ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤)))
1613, 15bitrid 283 . . . . . . . . . 10 (Lim 𝐴 → ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ↔ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤)))
1711, 16bitrid 283 . . . . . . . . 9 (Lim 𝐴 → (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ↔ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤)))
1817anbi2d 630 . . . . . . . 8 (Lim 𝐴 → ((𝑦 = (card‘𝑥) ∧ 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}) ↔ (𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))))
1910, 18bitrid 283 . . . . . . 7 (Lim 𝐴 → ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ 𝑦 = (card‘𝑥)) ↔ (𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))))
2019exbidv 1922 . . . . . 6 (Lim 𝐴 → (∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ 𝑦 = (card‘𝑥)) ↔ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))))
219, 20bitrid 283 . . . . 5 (Lim 𝐴 → (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))))
2221abbidv 2799 . . . 4 (Lim 𝐴 → {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))})
2322inteqd 4904 . . 3 (Lim 𝐴 {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))})
248, 23eqtr2id 2781 . 2 (Lim 𝐴 {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))} = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
256, 24eqtrd 2768 1 (Lim 𝐴 → (cf‘𝐴) = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  {cab 2711  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  wss 3898  𝒫 cpw 4551   cuni 4860   cint 4899   ciin 4944  Ord word 6313  Oncon0 6314  Lim wlim 6315  cfv 6489  cardccrd 9839  cfccf 9841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-ord 6317  df-on 6318  df-lim 6319  df-iota 6445  df-fun 6491  df-fv 6497  df-cf 9845
This theorem is referenced by:  cflim2  10165  cfss  10167  cfslb  10168
  Copyright terms: Public domain W3C validator