Step | Hyp | Ref
| Expression |
1 | | limord 6423 |
. . . 4
β’ (Lim
π΄ β Ord π΄) |
2 | | cflim3.1 |
. . . . 5
β’ π΄ β V |
3 | 2 | elon 6372 |
. . . 4
β’ (π΄ β On β Ord π΄) |
4 | 1, 3 | sylibr 233 |
. . 3
β’ (Lim
π΄ β π΄ β On) |
5 | | cfval 10244 |
. . 3
β’ (π΄ β On β
(cfβπ΄) = β© {π¦
β£ βπ₯(π¦ = (cardβπ₯) β§ (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€))}) |
6 | 4, 5 | syl 17 |
. 2
β’ (Lim
π΄ β (cfβπ΄) = β©
{π¦ β£ βπ₯(π¦ = (cardβπ₯) β§ (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€))}) |
7 | | fvex 6903 |
. . . 4
β’
(cardβπ₯)
β V |
8 | 7 | dfiin2 5036 |
. . 3
β’ β© π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} (cardβπ₯) = β© {π¦ β£ βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯)} |
9 | | df-rex 3069 |
. . . . . 6
β’
(βπ₯ β
{π₯ β π« π΄ β£ βͺ π₯ =
π΄}π¦ = (cardβπ₯) β βπ₯(π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ π¦ = (cardβπ₯))) |
10 | | ancom 459 |
. . . . . . . 8
β’ ((π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ π¦ = (cardβπ₯)) β (π¦ = (cardβπ₯) β§ π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄})) |
11 | | rabid 3450 |
. . . . . . . . . 10
β’ (π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β (π₯ β π« π΄ β§ βͺ π₯ = π΄)) |
12 | | velpw 4606 |
. . . . . . . . . . . 12
β’ (π₯ β π« π΄ β π₯ β π΄) |
13 | 12 | anbi1i 622 |
. . . . . . . . . . 11
β’ ((π₯ β π« π΄ β§ βͺ π₯ =
π΄) β (π₯ β π΄ β§ βͺ π₯ = π΄)) |
14 | | coflim 10258 |
. . . . . . . . . . . 12
β’ ((Lim
π΄ β§ π₯ β π΄) β (βͺ π₯ = π΄ β βπ§ β π΄ βπ€ β π₯ π§ β π€)) |
15 | 14 | pm5.32da 577 |
. . . . . . . . . . 11
β’ (Lim
π΄ β ((π₯ β π΄ β§ βͺ π₯ = π΄) β (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€))) |
16 | 13, 15 | bitrid 282 |
. . . . . . . . . 10
β’ (Lim
π΄ β ((π₯ β π« π΄ β§ βͺ π₯ =
π΄) β (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€))) |
17 | 11, 16 | bitrid 282 |
. . . . . . . . 9
β’ (Lim
π΄ β (π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€))) |
18 | 17 | anbi2d 627 |
. . . . . . . 8
β’ (Lim
π΄ β ((π¦ = (cardβπ₯) β§ π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}) β (π¦ = (cardβπ₯) β§ (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€)))) |
19 | 10, 18 | bitrid 282 |
. . . . . . 7
β’ (Lim
π΄ β ((π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ π¦ = (cardβπ₯)) β (π¦ = (cardβπ₯) β§ (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€)))) |
20 | 19 | exbidv 1922 |
. . . . . 6
β’ (Lim
π΄ β (βπ₯(π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ π¦ = (cardβπ₯)) β βπ₯(π¦ = (cardβπ₯) β§ (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€)))) |
21 | 9, 20 | bitrid 282 |
. . . . 5
β’ (Lim
π΄ β (βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯) β βπ₯(π¦ = (cardβπ₯) β§ (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€)))) |
22 | 21 | abbidv 2799 |
. . . 4
β’ (Lim
π΄ β {π¦ β£ βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯)} = {π¦ β£ βπ₯(π¦ = (cardβπ₯) β§ (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€))}) |
23 | 22 | inteqd 4954 |
. . 3
β’ (Lim
π΄ β β© {π¦
β£ βπ₯ β
{π₯ β π« π΄ β£ βͺ π₯ =
π΄}π¦ = (cardβπ₯)} = β© {π¦ β£ βπ₯(π¦ = (cardβπ₯) β§ (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€))}) |
24 | 8, 23 | eqtr2id 2783 |
. 2
β’ (Lim
π΄ β β© {π¦
β£ βπ₯(π¦ = (cardβπ₯) β§ (π₯ β π΄ β§ βπ§ β π΄ βπ€ β π₯ π§ β π€))} = β©
π₯ β {π₯ β π« π΄ β£ βͺ π₯ =
π΄} (cardβπ₯)) |
25 | 6, 24 | eqtrd 2770 |
1
β’ (Lim
π΄ β (cfβπ΄) = β© π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} (cardβπ₯)) |