MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflim3 Structured version   Visualization version   GIF version

Theorem cflim3 10296
Description: Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013.)
Hypothesis
Ref Expression
cflim3.1 𝐴 ∈ V
Assertion
Ref Expression
cflim3 (Lim 𝐴 → (cf‘𝐴) = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cflim3
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limord 6428 . . . 4 (Lim 𝐴 → Ord 𝐴)
2 cflim3.1 . . . . 5 𝐴 ∈ V
32elon 6377 . . . 4 (𝐴 ∈ On ↔ Ord 𝐴)
41, 3sylibr 233 . . 3 (Lim 𝐴𝐴 ∈ On)
5 cfval 10281 . . 3 (𝐴 ∈ On → (cf‘𝐴) = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))})
64, 5syl 17 . 2 (Lim 𝐴 → (cf‘𝐴) = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))})
7 fvex 6906 . . . 4 (card‘𝑥) ∈ V
87dfiin2 5034 . . 3 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) = {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)}
9 df-rex 3061 . . . . . 6 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ 𝑦 = (card‘𝑥)))
10 ancom 459 . . . . . . . 8 ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ 𝑦 = (card‘𝑥)) ↔ (𝑦 = (card‘𝑥) ∧ 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}))
11 rabid 3440 . . . . . . . . . 10 (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴))
12 velpw 4602 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1312anbi1i 622 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ↔ (𝑥𝐴 𝑥 = 𝐴))
14 coflim 10295 . . . . . . . . . . . 12 ((Lim 𝐴𝑥𝐴) → ( 𝑥 = 𝐴 ↔ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))
1514pm5.32da 577 . . . . . . . . . . 11 (Lim 𝐴 → ((𝑥𝐴 𝑥 = 𝐴) ↔ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤)))
1613, 15bitrid 282 . . . . . . . . . 10 (Lim 𝐴 → ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ↔ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤)))
1711, 16bitrid 282 . . . . . . . . 9 (Lim 𝐴 → (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ↔ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤)))
1817anbi2d 628 . . . . . . . 8 (Lim 𝐴 → ((𝑦 = (card‘𝑥) ∧ 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}) ↔ (𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))))
1910, 18bitrid 282 . . . . . . 7 (Lim 𝐴 → ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ 𝑦 = (card‘𝑥)) ↔ (𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))))
2019exbidv 1917 . . . . . 6 (Lim 𝐴 → (∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ 𝑦 = (card‘𝑥)) ↔ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))))
219, 20bitrid 282 . . . . 5 (Lim 𝐴 → (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))))
2221abbidv 2795 . . . 4 (Lim 𝐴 → {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))})
2322inteqd 4951 . . 3 (Lim 𝐴 {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} = {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))})
248, 23eqtr2id 2779 . 2 (Lim 𝐴 {𝑦 ∣ ∃𝑥(𝑦 = (card‘𝑥) ∧ (𝑥𝐴 ∧ ∀𝑧𝐴𝑤𝑥 𝑧𝑤))} = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
256, 24eqtrd 2766 1 (Lim 𝐴 → (cf‘𝐴) = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wex 1774  wcel 2099  {cab 2703  wral 3051  wrex 3060  {crab 3419  Vcvv 3462  wss 3946  𝒫 cpw 4597   cuni 4905   cint 4946   ciin 4994  Ord word 6367  Oncon0 6368  Lim wlim 6369  cfv 6546  cardccrd 9971  cfccf 9973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-ord 6371  df-on 6372  df-lim 6373  df-iota 6498  df-fun 6548  df-fv 6554  df-cf 9977
This theorem is referenced by:  cflim2  10297  cfss  10299  cfslb  10300
  Copyright terms: Public domain W3C validator