![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihglblem5 | Structured version Visualization version GIF version |
Description: Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014.) |
Ref | Expression |
---|---|
dihglblem5.b | ⊢ 𝐵 = (Base‘𝐾) |
dihglblem5.g | ⊢ 𝐺 = (glb‘𝐾) |
dihglblem5.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihglblem5.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihglblem5.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihglblem5.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
Ref | Expression |
---|---|
dihglblem5 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅)) → ∩ 𝑥 ∈ 𝑇 (𝐼‘𝑥) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6558 | . . 3 ⊢ (𝐼‘𝑥) ∈ V | |
2 | 1 | dfiin2 4868 | . 2 ⊢ ∩ 𝑥 ∈ 𝑇 (𝐼‘𝑥) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝑇 𝑦 = (𝐼‘𝑥)} |
3 | dihglblem5.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dihglblem5.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | simpl 483 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 3, 4, 5 | dvhlmod 37798 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅)) → 𝑈 ∈ LMod) |
7 | simpll 763 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅)) ∧ 𝑥 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | simplrl 773 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅)) ∧ 𝑥 ∈ 𝑇) → 𝑇 ⊆ 𝐵) | |
9 | simpr 485 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅)) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝑇) | |
10 | 8, 9 | sseldd 3896 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅)) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝐵) |
11 | dihglblem5.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
12 | dihglblem5.i | . . . . . . 7 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
13 | dihglblem5.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑈) | |
14 | 11, 3, 12, 4, 13 | dihlss 37938 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝐵) → (𝐼‘𝑥) ∈ 𝑆) |
15 | 7, 10, 14 | syl2anc 584 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅)) ∧ 𝑥 ∈ 𝑇) → (𝐼‘𝑥) ∈ 𝑆) |
16 | 15 | ralrimiva 3151 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅)) → ∀𝑥 ∈ 𝑇 (𝐼‘𝑥) ∈ 𝑆) |
17 | uniiunlem 3988 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑇 (𝐼‘𝑥) ∈ 𝑆 → (∀𝑥 ∈ 𝑇 (𝐼‘𝑥) ∈ 𝑆 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝑇 𝑦 = (𝐼‘𝑥)} ⊆ 𝑆)) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅)) → (∀𝑥 ∈ 𝑇 (𝐼‘𝑥) ∈ 𝑆 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝑇 𝑦 = (𝐼‘𝑥)} ⊆ 𝑆)) |
19 | 16, 18 | mpbid 233 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅)) → {𝑦 ∣ ∃𝑥 ∈ 𝑇 𝑦 = (𝐼‘𝑥)} ⊆ 𝑆) |
20 | simprr 769 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅)) → 𝑇 ≠ ∅) | |
21 | n0 4236 | . . . . 5 ⊢ (𝑇 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑇) | |
22 | 20, 21 | sylib 219 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅)) → ∃𝑥 𝑥 ∈ 𝑇) |
23 | nfre1 3271 | . . . . . . 7 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝑇 𝑦 = (𝐼‘𝑥) | |
24 | 23 | nfab 2957 | . . . . . 6 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑥 ∈ 𝑇 𝑦 = (𝐼‘𝑥)} |
25 | nfcv 2951 | . . . . . 6 ⊢ Ⅎ𝑥∅ | |
26 | 24, 25 | nfne 3089 | . . . . 5 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑥 ∈ 𝑇 𝑦 = (𝐼‘𝑥)} ≠ ∅ |
27 | 1 | elabrex 6874 | . . . . . 6 ⊢ (𝑥 ∈ 𝑇 → (𝐼‘𝑥) ∈ {𝑦 ∣ ∃𝑥 ∈ 𝑇 𝑦 = (𝐼‘𝑥)}) |
28 | 27 | ne0d 4227 | . . . . 5 ⊢ (𝑥 ∈ 𝑇 → {𝑦 ∣ ∃𝑥 ∈ 𝑇 𝑦 = (𝐼‘𝑥)} ≠ ∅) |
29 | 26, 28 | exlimi 2184 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝑇 → {𝑦 ∣ ∃𝑥 ∈ 𝑇 𝑦 = (𝐼‘𝑥)} ≠ ∅) |
30 | 22, 29 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅)) → {𝑦 ∣ ∃𝑥 ∈ 𝑇 𝑦 = (𝐼‘𝑥)} ≠ ∅) |
31 | 13 | lssintcl 19430 | . . 3 ⊢ ((𝑈 ∈ LMod ∧ {𝑦 ∣ ∃𝑥 ∈ 𝑇 𝑦 = (𝐼‘𝑥)} ⊆ 𝑆 ∧ {𝑦 ∣ ∃𝑥 ∈ 𝑇 𝑦 = (𝐼‘𝑥)} ≠ ∅) → ∩ {𝑦 ∣ ∃𝑥 ∈ 𝑇 𝑦 = (𝐼‘𝑥)} ∈ 𝑆) |
32 | 6, 19, 30, 31 | syl3anc 1364 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅)) → ∩ {𝑦 ∣ ∃𝑥 ∈ 𝑇 𝑦 = (𝐼‘𝑥)} ∈ 𝑆) |
33 | 2, 32 | syl5eqel 2889 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅)) → ∩ 𝑥 ∈ 𝑇 (𝐼‘𝑥) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1525 ∃wex 1765 ∈ wcel 2083 {cab 2777 ≠ wne 2986 ∀wral 3107 ∃wrex 3108 ⊆ wss 3865 ∅c0 4217 ∩ cint 4788 ∩ ciin 4832 ‘cfv 6232 Basecbs 16316 glbcglb 17386 LModclmod 19328 LSubSpclss 19397 HLchlt 36038 LHypclh 36672 DVecHcdvh 37766 DIsoHcdih 37916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-riotaBAD 35641 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-fal 1538 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-iin 4834 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-tpos 7750 df-undef 7797 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-oadd 7964 df-er 8146 df-map 8265 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-n0 11752 df-z 11836 df-uz 12098 df-fz 12747 df-struct 16318 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-ress 16324 df-plusg 16411 df-mulr 16412 df-sca 16414 df-vsca 16415 df-0g 16548 df-proset 17371 df-poset 17389 df-plt 17401 df-lub 17417 df-glb 17418 df-join 17419 df-meet 17420 df-p0 17482 df-p1 17483 df-lat 17489 df-clat 17551 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-submnd 17779 df-grp 17868 df-minusg 17869 df-sbg 17870 df-subg 18034 df-cntz 18192 df-lsm 18495 df-cmn 18639 df-abl 18640 df-mgp 18934 df-ur 18946 df-ring 18993 df-oppr 19067 df-dvdsr 19085 df-unit 19086 df-invr 19116 df-dvr 19127 df-drng 19198 df-lmod 19330 df-lss 19398 df-lsp 19438 df-lvec 19569 df-oposet 35864 df-ol 35866 df-oml 35867 df-covers 35954 df-ats 35955 df-atl 35986 df-cvlat 36010 df-hlat 36039 df-llines 36186 df-lplanes 36187 df-lvols 36188 df-lines 36189 df-psubsp 36191 df-pmap 36192 df-padd 36484 df-lhyp 36676 df-laut 36677 df-ldil 36792 df-ltrn 36793 df-trl 36847 df-tendo 37443 df-edring 37445 df-disoa 37717 df-dvech 37767 df-dib 37827 df-dic 37861 df-dih 37917 |
This theorem is referenced by: dihglblem6 38028 |
Copyright terms: Public domain | W3C validator |