Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > intima0 | Structured version Visualization version GIF version |
Description: Two ways of expressing the intersection of images of a class. (Contributed by RP, 13-Apr-2020.) |
Ref | Expression |
---|---|
intima0 | ⊢ ∩ 𝑎 ∈ 𝐴 (𝑎 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . 3 ⊢ 𝑎 ∈ V | |
2 | 1 | imaex 7737 | . 2 ⊢ (𝑎 “ 𝐵) ∈ V |
3 | 2 | dfiin2 4960 | 1 ⊢ ∩ 𝑎 ∈ 𝐴 (𝑎 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cab 2715 ∃wrex 3064 ∩ cint 4876 ∩ ciin 4922 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iin 4924 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: intimass2 41152 intimasn2 41155 |
Copyright terms: Public domain | W3C validator |