| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > intima0 | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing the intersection of images of a class. (Contributed by RP, 13-Apr-2020.) |
| Ref | Expression |
|---|---|
| intima0 | ⊢ ∩ 𝑎 ∈ 𝐴 (𝑎 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . . 3 ⊢ 𝑎 ∈ V | |
| 2 | 1 | imaex 7892 | . 2 ⊢ (𝑎 “ 𝐵) ∈ V |
| 3 | 2 | dfiin2 5000 | 1 ⊢ ∩ 𝑎 ∈ 𝐴 (𝑎 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2708 ∃wrex 3054 ∩ cint 4912 ∩ ciin 4958 “ cima 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iin 4960 df-br 5110 df-opab 5172 df-xp 5646 df-cnv 5648 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 |
| This theorem is referenced by: intimass2 43637 intimasn2 43640 |
| Copyright terms: Public domain | W3C validator |