| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > intima0 | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing the intersection of images of a class. (Contributed by RP, 13-Apr-2020.) |
| Ref | Expression |
|---|---|
| intima0 | ⊢ ∩ 𝑎 ∈ 𝐴 (𝑎 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3467 | . . 3 ⊢ 𝑎 ∈ V | |
| 2 | 1 | imaex 7918 | . 2 ⊢ (𝑎 “ 𝐵) ∈ V |
| 3 | 2 | dfiin2 5014 | 1 ⊢ ∩ 𝑎 ∈ 𝐴 (𝑎 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 {cab 2712 ∃wrex 3059 ∩ cint 4926 ∩ ciin 4972 “ cima 5668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iin 4974 df-br 5124 df-opab 5186 df-xp 5671 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 |
| This theorem is referenced by: intimass2 43630 intimasn2 43633 |
| Copyright terms: Public domain | W3C validator |