| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > intima0 | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing the intersection of images of a class. (Contributed by RP, 13-Apr-2020.) |
| Ref | Expression |
|---|---|
| intima0 | ⊢ ∩ 𝑎 ∈ 𝐴 (𝑎 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3441 | . . 3 ⊢ 𝑎 ∈ V | |
| 2 | 1 | imaex 7850 | . 2 ⊢ (𝑎 “ 𝐵) ∈ V |
| 3 | 2 | dfiin2 4983 | 1 ⊢ ∩ 𝑎 ∈ 𝐴 (𝑎 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cab 2711 ∃wrex 3057 ∩ cint 4897 ∩ ciin 4942 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iin 4944 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: intimass2 43773 intimasn2 43776 |
| Copyright terms: Public domain | W3C validator |