Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intima0 Structured version   Visualization version   GIF version

Theorem intima0 43621
Description: Two ways of expressing the intersection of images of a class. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
intima0 𝑎𝐴 (𝑎𝐵) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑎
Allowed substitution hints:   𝐴(𝑎)   𝐵(𝑎)

Proof of Theorem intima0
StepHypRef Expression
1 vex 3442 . . 3 𝑎 ∈ V
21imaex 7854 . 2 (𝑎𝐵) ∈ V
32dfiin2 4986 1 𝑎𝐴 (𝑎𝐵) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {cab 2707  wrex 3053   cint 4899   ciin 4945  cima 5626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iin 4947  df-br 5096  df-opab 5158  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636
This theorem is referenced by:  intimass2  43628  intimasn2  43631
  Copyright terms: Public domain W3C validator