Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intima0 Structured version   Visualization version   GIF version

Theorem intima0 41256
Description: Two ways of expressing the intersection of images of a class. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
intima0 𝑎𝐴 (𝑎𝐵) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑎
Allowed substitution hints:   𝐴(𝑎)   𝐵(𝑎)

Proof of Theorem intima0
StepHypRef Expression
1 vex 3436 . . 3 𝑎 ∈ V
21imaex 7763 . 2 (𝑎𝐵) ∈ V
32dfiin2 4964 1 𝑎𝐴 (𝑎𝐵) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {cab 2715  wrex 3065   cint 4879   ciin 4925  cima 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iin 4927  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602
This theorem is referenced by:  intimass2  41263  intimasn2  41266
  Copyright terms: Public domain W3C validator