Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > intima0 | Structured version Visualization version GIF version |
Description: Two ways of expressing the intersection of images of a class. (Contributed by RP, 13-Apr-2020.) |
Ref | Expression |
---|---|
intima0 | ⊢ ∩ 𝑎 ∈ 𝐴 (𝑎 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3401 | . . 3 ⊢ 𝑎 ∈ V | |
2 | 1 | imaex 7640 | . 2 ⊢ (𝑎 “ 𝐵) ∈ V |
3 | 2 | dfiin2 4917 | 1 ⊢ ∩ 𝑎 ∈ 𝐴 (𝑎 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 {cab 2716 ∃wrex 3054 ∩ cint 4833 ∩ ciin 4879 “ cima 5522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-int 4834 df-iin 4881 df-br 5028 df-opab 5090 df-xp 5525 df-cnv 5527 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 |
This theorem is referenced by: intimass2 40793 intimasn2 40796 |
Copyright terms: Public domain | W3C validator |