![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fniinfv | Structured version Visualization version GIF version |
Description: The indexed intersection of a function's values is the intersection of its range. (Contributed by NM, 20-Oct-2005.) |
Ref | Expression |
---|---|
fniinfv | ⊢ (𝐹 Fn 𝐴 → ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∩ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrnfv 6489 | . . 3 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
2 | 1 | inteqd 4702 | . 2 ⊢ (𝐹 Fn 𝐴 → ∩ ran 𝐹 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
3 | fvex 6446 | . . 3 ⊢ (𝐹‘𝑥) ∈ V | |
4 | 3 | dfiin2 4775 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
5 | 2, 4 | syl6reqr 2880 | 1 ⊢ (𝐹 Fn 𝐴 → ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∩ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 {cab 2811 ∃wrex 3118 ∩ cint 4697 ∩ ciin 4741 ran crn 5343 Fn wfn 6118 ‘cfv 6123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-int 4698 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-iota 6086 df-fun 6125 df-fn 6126 df-fv 6131 |
This theorem is referenced by: firest 16446 pnrmopn 21518 txtube 21814 bcth3 23499 diaintclN 37133 dibintclN 37242 dihintcl 37419 imaiinfv 38100 |
Copyright terms: Public domain | W3C validator |