![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salexct2 | Structured version Visualization version GIF version |
Description: An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct 45622. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
salexct2.1 | ⊢ 𝐴 = (0[,]2) |
salexct2.2 | ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} |
salexct2.3 | ⊢ 𝐵 = (0[,]1) |
Ref | Expression |
---|---|
salexct2 | ⊢ ¬ 𝐵 ∈ 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11265 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 0 ∈ ℝ*) |
3 | 1xr 11277 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
4 | 3 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 1 ∈ ℝ*) |
5 | 0lt1 11740 | . . . . . . . 8 ⊢ 0 < 1 | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 0 < 1) |
7 | salexct2.3 | . . . . . . 7 ⊢ 𝐵 = (0[,]1) | |
8 | 2, 4, 6, 7 | iccnct 44826 | . . . . . 6 ⊢ (⊤ → ¬ 𝐵 ≼ ω) |
9 | 8 | mptru 1540 | . . . . 5 ⊢ ¬ 𝐵 ≼ ω |
10 | 2re 12290 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
11 | 10 | rexri 11276 | . . . . . . . . 9 ⊢ 2 ∈ ℝ* |
12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 2 ∈ ℝ*) |
13 | 1lt2 12387 | . . . . . . . . 9 ⊢ 1 < 2 | |
14 | 13 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 1 < 2) |
15 | eqid 2726 | . . . . . . . 8 ⊢ (1(,]2) = (1(,]2) | |
16 | 4, 12, 14, 15 | iocnct 44825 | . . . . . . 7 ⊢ (⊤ → ¬ (1(,]2) ≼ ω) |
17 | 16 | mptru 1540 | . . . . . 6 ⊢ ¬ (1(,]2) ≼ ω |
18 | salexct2.1 | . . . . . . . . 9 ⊢ 𝐴 = (0[,]2) | |
19 | 18, 7 | difeq12i 4115 | . . . . . . . 8 ⊢ (𝐴 ∖ 𝐵) = ((0[,]2) ∖ (0[,]1)) |
20 | 2, 4, 6 | xrltled 13135 | . . . . . . . . . 10 ⊢ (⊤ → 0 ≤ 1) |
21 | 2, 4, 12, 20 | iccdificc 44824 | . . . . . . . . 9 ⊢ (⊤ → ((0[,]2) ∖ (0[,]1)) = (1(,]2)) |
22 | 21 | mptru 1540 | . . . . . . . 8 ⊢ ((0[,]2) ∖ (0[,]1)) = (1(,]2) |
23 | 19, 22 | eqtri 2754 | . . . . . . 7 ⊢ (𝐴 ∖ 𝐵) = (1(,]2) |
24 | 23 | breq1i 5148 | . . . . . 6 ⊢ ((𝐴 ∖ 𝐵) ≼ ω ↔ (1(,]2) ≼ ω) |
25 | 17, 24 | mtbir 323 | . . . . 5 ⊢ ¬ (𝐴 ∖ 𝐵) ≼ ω |
26 | 9, 25 | pm3.2i 470 | . . . 4 ⊢ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴 ∖ 𝐵) ≼ ω) |
27 | ioran 980 | . . . 4 ⊢ (¬ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω) ↔ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴 ∖ 𝐵) ≼ ω)) | |
28 | 26, 27 | mpbir 230 | . . 3 ⊢ ¬ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω) |
29 | 28 | intnan 486 | . 2 ⊢ ¬ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω)) |
30 | breq1 5144 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ≼ ω ↔ 𝐵 ≼ ω)) | |
31 | difeq2 4111 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝐵)) | |
32 | 31 | breq1d 5151 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ 𝐵) ≼ ω)) |
33 | 30, 32 | orbi12d 915 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω) ↔ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω))) |
34 | salexct2.2 | . . 3 ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} | |
35 | 33, 34 | elrab2 3681 | . 2 ⊢ (𝐵 ∈ 𝑆 ↔ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω))) |
36 | 29, 35 | mtbir 323 | 1 ⊢ ¬ 𝐵 ∈ 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 844 = wceq 1533 ⊤wtru 1534 ∈ wcel 2098 {crab 3426 ∖ cdif 3940 𝒫 cpw 4597 class class class wbr 5141 (class class class)co 7405 ωcom 7852 ≼ cdom 8939 0cc0 11112 1c1 11113 ℝ*cxr 11251 < clt 11252 2c2 12271 (,]cioc 13331 [,]cicc 13333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-oadd 8471 df-omul 8472 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-acn 9939 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-q 12937 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ioo 13334 df-ioc 13335 df-ico 13336 df-icc 13337 df-fz 13491 df-fzo 13634 df-fl 13763 df-seq 13973 df-exp 14033 df-hash 14296 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-limsup 15421 df-clim 15438 df-rlim 15439 df-sum 15639 df-topgen 17398 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-top 22751 df-topon 22768 df-bases 22804 df-ntr 22879 |
This theorem is referenced by: salexct3 45630 salgencntex 45631 salgensscntex 45632 |
Copyright terms: Public domain | W3C validator |