![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salexct2 | Structured version Visualization version GIF version |
Description: An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct 41295. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
salexct2.1 | ⊢ 𝐴 = (0[,]2) |
salexct2.2 | ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} |
salexct2.3 | ⊢ 𝐵 = (0[,]1) |
Ref | Expression |
---|---|
salexct2 | ⊢ ¬ 𝐵 ∈ 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10375 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 0 ∈ ℝ*) |
3 | 1re 10328 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
4 | 3 | rexri 10387 | . . . . . . . 8 ⊢ 1 ∈ ℝ* |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 1 ∈ ℝ*) |
6 | 0lt1 10842 | . . . . . . . 8 ⊢ 0 < 1 | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 0 < 1) |
8 | salexct2.3 | . . . . . . 7 ⊢ 𝐵 = (0[,]1) | |
9 | 2, 5, 7, 8 | iccnct 40512 | . . . . . 6 ⊢ (⊤ → ¬ 𝐵 ≼ ω) |
10 | 9 | mptru 1661 | . . . . 5 ⊢ ¬ 𝐵 ≼ ω |
11 | 2re 11387 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
12 | 11 | rexri 10387 | . . . . . . . . 9 ⊢ 2 ∈ ℝ* |
13 | 12 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 2 ∈ ℝ*) |
14 | 1lt2 11491 | . . . . . . . . 9 ⊢ 1 < 2 | |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 1 < 2) |
16 | eqid 2799 | . . . . . . . 8 ⊢ (1(,]2) = (1(,]2) | |
17 | 5, 13, 15, 16 | iocnct 40511 | . . . . . . 7 ⊢ (⊤ → ¬ (1(,]2) ≼ ω) |
18 | 17 | mptru 1661 | . . . . . 6 ⊢ ¬ (1(,]2) ≼ ω |
19 | salexct2.1 | . . . . . . . . 9 ⊢ 𝐴 = (0[,]2) | |
20 | 19, 8 | difeq12i 3924 | . . . . . . . 8 ⊢ (𝐴 ∖ 𝐵) = ((0[,]2) ∖ (0[,]1)) |
21 | 2, 5, 7 | xrltled 12230 | . . . . . . . . . 10 ⊢ (⊤ → 0 ≤ 1) |
22 | 2, 5, 13, 21 | iccdificc 40510 | . . . . . . . . 9 ⊢ (⊤ → ((0[,]2) ∖ (0[,]1)) = (1(,]2)) |
23 | 22 | mptru 1661 | . . . . . . . 8 ⊢ ((0[,]2) ∖ (0[,]1)) = (1(,]2) |
24 | 20, 23 | eqtri 2821 | . . . . . . 7 ⊢ (𝐴 ∖ 𝐵) = (1(,]2) |
25 | 24 | breq1i 4850 | . . . . . 6 ⊢ ((𝐴 ∖ 𝐵) ≼ ω ↔ (1(,]2) ≼ ω) |
26 | 18, 25 | mtbir 315 | . . . . 5 ⊢ ¬ (𝐴 ∖ 𝐵) ≼ ω |
27 | 10, 26 | pm3.2i 463 | . . . 4 ⊢ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴 ∖ 𝐵) ≼ ω) |
28 | ioran 1007 | . . . 4 ⊢ (¬ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω) ↔ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴 ∖ 𝐵) ≼ ω)) | |
29 | 27, 28 | mpbir 223 | . . 3 ⊢ ¬ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω) |
30 | 29 | intnan 481 | . 2 ⊢ ¬ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω)) |
31 | breq1 4846 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ≼ ω ↔ 𝐵 ≼ ω)) | |
32 | difeq2 3920 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝐵)) | |
33 | 32 | breq1d 4853 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ 𝐵) ≼ ω)) |
34 | 31, 33 | orbi12d 943 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω) ↔ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω))) |
35 | salexct2.2 | . . 3 ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} | |
36 | 34, 35 | elrab2 3560 | . 2 ⊢ (𝐵 ∈ 𝑆 ↔ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω))) |
37 | 30, 36 | mtbir 315 | 1 ⊢ ¬ 𝐵 ∈ 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 385 ∨ wo 874 = wceq 1653 ⊤wtru 1654 ∈ wcel 2157 {crab 3093 ∖ cdif 3766 𝒫 cpw 4349 class class class wbr 4843 (class class class)co 6878 ωcom 7299 ≼ cdom 8193 0cc0 10224 1c1 10225 ℝ*cxr 10362 < clt 10363 2c2 11368 (,]cioc 12425 [,]cicc 12427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-omul 7804 df-er 7982 df-map 8097 df-pm 8098 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-acn 9054 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-n0 11581 df-z 11667 df-uz 11931 df-q 12034 df-rp 12075 df-xneg 12193 df-xadd 12194 df-xmul 12195 df-ioo 12428 df-ioc 12429 df-ico 12430 df-icc 12431 df-fz 12581 df-fzo 12721 df-fl 12848 df-seq 13056 df-exp 13115 df-hash 13371 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-limsup 14543 df-clim 14560 df-rlim 14561 df-sum 14758 df-topgen 16419 df-psmet 20060 df-xmet 20061 df-met 20062 df-bl 20063 df-mopn 20064 df-top 21027 df-topon 21044 df-bases 21079 df-ntr 21153 |
This theorem is referenced by: salexct3 41303 salgencntex 41304 salgensscntex 41305 |
Copyright terms: Public domain | W3C validator |