| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salexct2 | Structured version Visualization version GIF version | ||
| Description: An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct 46330. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| salexct2.1 | ⊢ 𝐴 = (0[,]2) |
| salexct2.2 | ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} |
| salexct2.3 | ⊢ 𝐵 = (0[,]1) |
| Ref | Expression |
|---|---|
| salexct2 | ⊢ ¬ 𝐵 ∈ 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11287 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 0 ∈ ℝ*) |
| 3 | 1xr 11299 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
| 4 | 3 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 1 ∈ ℝ*) |
| 5 | 0lt1 11764 | . . . . . . . 8 ⊢ 0 < 1 | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 0 < 1) |
| 7 | salexct2.3 | . . . . . . 7 ⊢ 𝐵 = (0[,]1) | |
| 8 | 2, 4, 6, 7 | iccnct 45537 | . . . . . 6 ⊢ (⊤ → ¬ 𝐵 ≼ ω) |
| 9 | 8 | mptru 1547 | . . . . 5 ⊢ ¬ 𝐵 ≼ ω |
| 10 | 2re 12319 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 11 | 10 | rexri 11298 | . . . . . . . . 9 ⊢ 2 ∈ ℝ* |
| 12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 2 ∈ ℝ*) |
| 13 | 1lt2 12416 | . . . . . . . . 9 ⊢ 1 < 2 | |
| 14 | 13 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 1 < 2) |
| 15 | eqid 2736 | . . . . . . . 8 ⊢ (1(,]2) = (1(,]2) | |
| 16 | 4, 12, 14, 15 | iocnct 45536 | . . . . . . 7 ⊢ (⊤ → ¬ (1(,]2) ≼ ω) |
| 17 | 16 | mptru 1547 | . . . . . 6 ⊢ ¬ (1(,]2) ≼ ω |
| 18 | salexct2.1 | . . . . . . . . 9 ⊢ 𝐴 = (0[,]2) | |
| 19 | 18, 7 | difeq12i 4104 | . . . . . . . 8 ⊢ (𝐴 ∖ 𝐵) = ((0[,]2) ∖ (0[,]1)) |
| 20 | 2, 4, 6 | xrltled 13171 | . . . . . . . . . 10 ⊢ (⊤ → 0 ≤ 1) |
| 21 | 2, 4, 12, 20 | iccdificc 45535 | . . . . . . . . 9 ⊢ (⊤ → ((0[,]2) ∖ (0[,]1)) = (1(,]2)) |
| 22 | 21 | mptru 1547 | . . . . . . . 8 ⊢ ((0[,]2) ∖ (0[,]1)) = (1(,]2) |
| 23 | 19, 22 | eqtri 2759 | . . . . . . 7 ⊢ (𝐴 ∖ 𝐵) = (1(,]2) |
| 24 | 23 | breq1i 5131 | . . . . . 6 ⊢ ((𝐴 ∖ 𝐵) ≼ ω ↔ (1(,]2) ≼ ω) |
| 25 | 17, 24 | mtbir 323 | . . . . 5 ⊢ ¬ (𝐴 ∖ 𝐵) ≼ ω |
| 26 | 9, 25 | pm3.2i 470 | . . . 4 ⊢ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴 ∖ 𝐵) ≼ ω) |
| 27 | ioran 985 | . . . 4 ⊢ (¬ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω) ↔ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴 ∖ 𝐵) ≼ ω)) | |
| 28 | 26, 27 | mpbir 231 | . . 3 ⊢ ¬ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω) |
| 29 | 28 | intnan 486 | . 2 ⊢ ¬ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω)) |
| 30 | breq1 5127 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ≼ ω ↔ 𝐵 ≼ ω)) | |
| 31 | difeq2 4100 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝐵)) | |
| 32 | 31 | breq1d 5134 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ 𝐵) ≼ ω)) |
| 33 | 30, 32 | orbi12d 918 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω) ↔ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω))) |
| 34 | salexct2.2 | . . 3 ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} | |
| 35 | 33, 34 | elrab2 3679 | . 2 ⊢ (𝐵 ∈ 𝑆 ↔ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω))) |
| 36 | 29, 35 | mtbir 323 | 1 ⊢ ¬ 𝐵 ∈ 𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 {crab 3420 ∖ cdif 3928 𝒫 cpw 4580 class class class wbr 5124 (class class class)co 7410 ωcom 7866 ≼ cdom 8962 0cc0 11134 1c1 11135 ℝ*cxr 11273 < clt 11274 2c2 12300 (,]cioc 13368 [,]cicc 13370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-omul 8490 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-acn 9961 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ioc 13372 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 df-rlim 15510 df-sum 15708 df-topgen 17462 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-top 22837 df-topon 22854 df-bases 22889 df-ntr 22963 |
| This theorem is referenced by: salexct3 46338 salgencntex 46339 salgensscntex 46340 |
| Copyright terms: Public domain | W3C validator |