| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salexct2 | Structured version Visualization version GIF version | ||
| Description: An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct 46332. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| salexct2.1 | ⊢ 𝐴 = (0[,]2) |
| salexct2.2 | ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} |
| salexct2.3 | ⊢ 𝐵 = (0[,]1) |
| Ref | Expression |
|---|---|
| salexct2 | ⊢ ¬ 𝐵 ∈ 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11221 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 0 ∈ ℝ*) |
| 3 | 1xr 11233 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
| 4 | 3 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 1 ∈ ℝ*) |
| 5 | 0lt1 11700 | . . . . . . . 8 ⊢ 0 < 1 | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 0 < 1) |
| 7 | salexct2.3 | . . . . . . 7 ⊢ 𝐵 = (0[,]1) | |
| 8 | 2, 4, 6, 7 | iccnct 45539 | . . . . . 6 ⊢ (⊤ → ¬ 𝐵 ≼ ω) |
| 9 | 8 | mptru 1547 | . . . . 5 ⊢ ¬ 𝐵 ≼ ω |
| 10 | 2re 12260 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 11 | 10 | rexri 11232 | . . . . . . . . 9 ⊢ 2 ∈ ℝ* |
| 12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 2 ∈ ℝ*) |
| 13 | 1lt2 12352 | . . . . . . . . 9 ⊢ 1 < 2 | |
| 14 | 13 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 1 < 2) |
| 15 | eqid 2729 | . . . . . . . 8 ⊢ (1(,]2) = (1(,]2) | |
| 16 | 4, 12, 14, 15 | iocnct 45538 | . . . . . . 7 ⊢ (⊤ → ¬ (1(,]2) ≼ ω) |
| 17 | 16 | mptru 1547 | . . . . . 6 ⊢ ¬ (1(,]2) ≼ ω |
| 18 | salexct2.1 | . . . . . . . . 9 ⊢ 𝐴 = (0[,]2) | |
| 19 | 18, 7 | difeq12i 4087 | . . . . . . . 8 ⊢ (𝐴 ∖ 𝐵) = ((0[,]2) ∖ (0[,]1)) |
| 20 | 2, 4, 6 | xrltled 13110 | . . . . . . . . . 10 ⊢ (⊤ → 0 ≤ 1) |
| 21 | 2, 4, 12, 20 | iccdificc 45537 | . . . . . . . . 9 ⊢ (⊤ → ((0[,]2) ∖ (0[,]1)) = (1(,]2)) |
| 22 | 21 | mptru 1547 | . . . . . . . 8 ⊢ ((0[,]2) ∖ (0[,]1)) = (1(,]2) |
| 23 | 19, 22 | eqtri 2752 | . . . . . . 7 ⊢ (𝐴 ∖ 𝐵) = (1(,]2) |
| 24 | 23 | breq1i 5114 | . . . . . 6 ⊢ ((𝐴 ∖ 𝐵) ≼ ω ↔ (1(,]2) ≼ ω) |
| 25 | 17, 24 | mtbir 323 | . . . . 5 ⊢ ¬ (𝐴 ∖ 𝐵) ≼ ω |
| 26 | 9, 25 | pm3.2i 470 | . . . 4 ⊢ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴 ∖ 𝐵) ≼ ω) |
| 27 | ioran 985 | . . . 4 ⊢ (¬ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω) ↔ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴 ∖ 𝐵) ≼ ω)) | |
| 28 | 26, 27 | mpbir 231 | . . 3 ⊢ ¬ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω) |
| 29 | 28 | intnan 486 | . 2 ⊢ ¬ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω)) |
| 30 | breq1 5110 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ≼ ω ↔ 𝐵 ≼ ω)) | |
| 31 | difeq2 4083 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝐵)) | |
| 32 | 31 | breq1d 5117 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ 𝐵) ≼ ω)) |
| 33 | 30, 32 | orbi12d 918 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω) ↔ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω))) |
| 34 | salexct2.2 | . . 3 ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} | |
| 35 | 33, 34 | elrab2 3662 | . 2 ⊢ (𝐵 ∈ 𝑆 ↔ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω))) |
| 36 | 29, 35 | mtbir 323 | 1 ⊢ ¬ 𝐵 ∈ 𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 {crab 3405 ∖ cdif 3911 𝒫 cpw 4563 class class class wbr 5107 (class class class)co 7387 ωcom 7842 ≼ cdom 8916 0cc0 11068 1c1 11069 ℝ*cxr 11207 < clt 11208 2c2 12241 (,]cioc 13307 [,]cicc 13309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 df-ntr 22907 |
| This theorem is referenced by: salexct3 46340 salgencntex 46341 salgensscntex 46342 |
| Copyright terms: Public domain | W3C validator |