| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salexct2 | Structured version Visualization version GIF version | ||
| Description: An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct 46431. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| salexct2.1 | ⊢ 𝐴 = (0[,]2) |
| salexct2.2 | ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} |
| salexct2.3 | ⊢ 𝐵 = (0[,]1) |
| Ref | Expression |
|---|---|
| salexct2 | ⊢ ¬ 𝐵 ∈ 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11159 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 0 ∈ ℝ*) |
| 3 | 1xr 11171 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
| 4 | 3 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 1 ∈ ℝ*) |
| 5 | 0lt1 11639 | . . . . . . . 8 ⊢ 0 < 1 | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 0 < 1) |
| 7 | salexct2.3 | . . . . . . 7 ⊢ 𝐵 = (0[,]1) | |
| 8 | 2, 4, 6, 7 | iccnct 45640 | . . . . . 6 ⊢ (⊤ → ¬ 𝐵 ≼ ω) |
| 9 | 8 | mptru 1548 | . . . . 5 ⊢ ¬ 𝐵 ≼ ω |
| 10 | 2re 12199 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 11 | 10 | rexri 11170 | . . . . . . . . 9 ⊢ 2 ∈ ℝ* |
| 12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 2 ∈ ℝ*) |
| 13 | 1lt2 12291 | . . . . . . . . 9 ⊢ 1 < 2 | |
| 14 | 13 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 1 < 2) |
| 15 | eqid 2731 | . . . . . . . 8 ⊢ (1(,]2) = (1(,]2) | |
| 16 | 4, 12, 14, 15 | iocnct 45639 | . . . . . . 7 ⊢ (⊤ → ¬ (1(,]2) ≼ ω) |
| 17 | 16 | mptru 1548 | . . . . . 6 ⊢ ¬ (1(,]2) ≼ ω |
| 18 | salexct2.1 | . . . . . . . . 9 ⊢ 𝐴 = (0[,]2) | |
| 19 | 18, 7 | difeq12i 4071 | . . . . . . . 8 ⊢ (𝐴 ∖ 𝐵) = ((0[,]2) ∖ (0[,]1)) |
| 20 | 2, 4, 6 | xrltled 13049 | . . . . . . . . . 10 ⊢ (⊤ → 0 ≤ 1) |
| 21 | 2, 4, 12, 20 | iccdificc 45638 | . . . . . . . . 9 ⊢ (⊤ → ((0[,]2) ∖ (0[,]1)) = (1(,]2)) |
| 22 | 21 | mptru 1548 | . . . . . . . 8 ⊢ ((0[,]2) ∖ (0[,]1)) = (1(,]2) |
| 23 | 19, 22 | eqtri 2754 | . . . . . . 7 ⊢ (𝐴 ∖ 𝐵) = (1(,]2) |
| 24 | 23 | breq1i 5096 | . . . . . 6 ⊢ ((𝐴 ∖ 𝐵) ≼ ω ↔ (1(,]2) ≼ ω) |
| 25 | 17, 24 | mtbir 323 | . . . . 5 ⊢ ¬ (𝐴 ∖ 𝐵) ≼ ω |
| 26 | 9, 25 | pm3.2i 470 | . . . 4 ⊢ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴 ∖ 𝐵) ≼ ω) |
| 27 | ioran 985 | . . . 4 ⊢ (¬ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω) ↔ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴 ∖ 𝐵) ≼ ω)) | |
| 28 | 26, 27 | mpbir 231 | . . 3 ⊢ ¬ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω) |
| 29 | 28 | intnan 486 | . 2 ⊢ ¬ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω)) |
| 30 | breq1 5092 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ≼ ω ↔ 𝐵 ≼ ω)) | |
| 31 | difeq2 4067 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝐵)) | |
| 32 | 31 | breq1d 5099 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ 𝐵) ≼ ω)) |
| 33 | 30, 32 | orbi12d 918 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω) ↔ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω))) |
| 34 | salexct2.2 | . . 3 ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} | |
| 35 | 33, 34 | elrab2 3645 | . 2 ⊢ (𝐵 ∈ 𝑆 ↔ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω))) |
| 36 | 29, 35 | mtbir 323 | 1 ⊢ ¬ 𝐵 ∈ 𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 {crab 3395 ∖ cdif 3894 𝒫 cpw 4547 class class class wbr 5089 (class class class)co 7346 ωcom 7796 ≼ cdom 8867 0cc0 11006 1c1 11007 ℝ*cxr 11145 < clt 11146 2c2 12180 (,]cioc 13246 [,]cicc 13248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-topgen 17347 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-top 22809 df-topon 22826 df-bases 22861 df-ntr 22935 |
| This theorem is referenced by: salexct3 46439 salgencntex 46440 salgensscntex 46441 |
| Copyright terms: Public domain | W3C validator |