Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salexct2 Structured version   Visualization version   GIF version

Theorem salexct2 46295
Description: An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct 46290. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salexct2.1 𝐴 = (0[,]2)
salexct2.2 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
salexct2.3 𝐵 = (0[,]1)
Assertion
Ref Expression
salexct2 ¬ 𝐵𝑆
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem salexct2
StepHypRef Expression
1 0xr 11306 . . . . . . . 8 0 ∈ ℝ*
21a1i 11 . . . . . . 7 (⊤ → 0 ∈ ℝ*)
3 1xr 11318 . . . . . . . 8 1 ∈ ℝ*
43a1i 11 . . . . . . 7 (⊤ → 1 ∈ ℝ*)
5 0lt1 11783 . . . . . . . 8 0 < 1
65a1i 11 . . . . . . 7 (⊤ → 0 < 1)
7 salexct2.3 . . . . . . 7 𝐵 = (0[,]1)
82, 4, 6, 7iccnct 45494 . . . . . 6 (⊤ → ¬ 𝐵 ≼ ω)
98mptru 1544 . . . . 5 ¬ 𝐵 ≼ ω
10 2re 12338 . . . . . . . . . 10 2 ∈ ℝ
1110rexri 11317 . . . . . . . . 9 2 ∈ ℝ*
1211a1i 11 . . . . . . . 8 (⊤ → 2 ∈ ℝ*)
13 1lt2 12435 . . . . . . . . 9 1 < 2
1413a1i 11 . . . . . . . 8 (⊤ → 1 < 2)
15 eqid 2735 . . . . . . . 8 (1(,]2) = (1(,]2)
164, 12, 14, 15iocnct 45493 . . . . . . 7 (⊤ → ¬ (1(,]2) ≼ ω)
1716mptru 1544 . . . . . 6 ¬ (1(,]2) ≼ ω
18 salexct2.1 . . . . . . . . 9 𝐴 = (0[,]2)
1918, 7difeq12i 4134 . . . . . . . 8 (𝐴𝐵) = ((0[,]2) ∖ (0[,]1))
202, 4, 6xrltled 13189 . . . . . . . . . 10 (⊤ → 0 ≤ 1)
212, 4, 12, 20iccdificc 45492 . . . . . . . . 9 (⊤ → ((0[,]2) ∖ (0[,]1)) = (1(,]2))
2221mptru 1544 . . . . . . . 8 ((0[,]2) ∖ (0[,]1)) = (1(,]2)
2319, 22eqtri 2763 . . . . . . 7 (𝐴𝐵) = (1(,]2)
2423breq1i 5155 . . . . . 6 ((𝐴𝐵) ≼ ω ↔ (1(,]2) ≼ ω)
2517, 24mtbir 323 . . . . 5 ¬ (𝐴𝐵) ≼ ω
269, 25pm3.2i 470 . . . 4 𝐵 ≼ ω ∧ ¬ (𝐴𝐵) ≼ ω)
27 ioran 985 . . . 4 (¬ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω) ↔ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴𝐵) ≼ ω))
2826, 27mpbir 231 . . 3 ¬ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω)
2928intnan 486 . 2 ¬ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω))
30 breq1 5151 . . . 4 (𝑥 = 𝐵 → (𝑥 ≼ ω ↔ 𝐵 ≼ ω))
31 difeq2 4130 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
3231breq1d 5158 . . . 4 (𝑥 = 𝐵 → ((𝐴𝑥) ≼ ω ↔ (𝐴𝐵) ≼ ω))
3330, 32orbi12d 918 . . 3 (𝑥 = 𝐵 → ((𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω) ↔ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω)))
34 salexct2.2 . . 3 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
3533, 34elrab2 3698 . 2 (𝐵𝑆 ↔ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω)))
3629, 35mtbir 323 1 ¬ 𝐵𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1537  wtru 1538  wcel 2106  {crab 3433  cdif 3960  𝒫 cpw 4605   class class class wbr 5148  (class class class)co 7431  ωcom 7887  cdom 8982  0cc0 11153  1c1 11154  *cxr 11292   < clt 11293  2c2 12319  (,]cioc 13385  [,]cicc 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969  df-ntr 23044
This theorem is referenced by:  salexct3  46298  salgencntex  46299  salgensscntex  46300
  Copyright terms: Public domain W3C validator