Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salexct2 Structured version   Visualization version   GIF version

Theorem salexct2 45774
Description: An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct 45769. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salexct2.1 𝐴 = (0[,]2)
salexct2.2 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
salexct2.3 𝐵 = (0[,]1)
Assertion
Ref Expression
salexct2 ¬ 𝐵𝑆
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem salexct2
StepHypRef Expression
1 0xr 11301 . . . . . . . 8 0 ∈ ℝ*
21a1i 11 . . . . . . 7 (⊤ → 0 ∈ ℝ*)
3 1xr 11313 . . . . . . . 8 1 ∈ ℝ*
43a1i 11 . . . . . . 7 (⊤ → 1 ∈ ℝ*)
5 0lt1 11776 . . . . . . . 8 0 < 1
65a1i 11 . . . . . . 7 (⊤ → 0 < 1)
7 salexct2.3 . . . . . . 7 𝐵 = (0[,]1)
82, 4, 6, 7iccnct 44973 . . . . . 6 (⊤ → ¬ 𝐵 ≼ ω)
98mptru 1540 . . . . 5 ¬ 𝐵 ≼ ω
10 2re 12326 . . . . . . . . . 10 2 ∈ ℝ
1110rexri 11312 . . . . . . . . 9 2 ∈ ℝ*
1211a1i 11 . . . . . . . 8 (⊤ → 2 ∈ ℝ*)
13 1lt2 12423 . . . . . . . . 9 1 < 2
1413a1i 11 . . . . . . . 8 (⊤ → 1 < 2)
15 eqid 2728 . . . . . . . 8 (1(,]2) = (1(,]2)
164, 12, 14, 15iocnct 44972 . . . . . . 7 (⊤ → ¬ (1(,]2) ≼ ω)
1716mptru 1540 . . . . . 6 ¬ (1(,]2) ≼ ω
18 salexct2.1 . . . . . . . . 9 𝐴 = (0[,]2)
1918, 7difeq12i 4120 . . . . . . . 8 (𝐴𝐵) = ((0[,]2) ∖ (0[,]1))
202, 4, 6xrltled 13171 . . . . . . . . . 10 (⊤ → 0 ≤ 1)
212, 4, 12, 20iccdificc 44971 . . . . . . . . 9 (⊤ → ((0[,]2) ∖ (0[,]1)) = (1(,]2))
2221mptru 1540 . . . . . . . 8 ((0[,]2) ∖ (0[,]1)) = (1(,]2)
2319, 22eqtri 2756 . . . . . . 7 (𝐴𝐵) = (1(,]2)
2423breq1i 5159 . . . . . 6 ((𝐴𝐵) ≼ ω ↔ (1(,]2) ≼ ω)
2517, 24mtbir 322 . . . . 5 ¬ (𝐴𝐵) ≼ ω
269, 25pm3.2i 469 . . . 4 𝐵 ≼ ω ∧ ¬ (𝐴𝐵) ≼ ω)
27 ioran 981 . . . 4 (¬ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω) ↔ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴𝐵) ≼ ω))
2826, 27mpbir 230 . . 3 ¬ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω)
2928intnan 485 . 2 ¬ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω))
30 breq1 5155 . . . 4 (𝑥 = 𝐵 → (𝑥 ≼ ω ↔ 𝐵 ≼ ω))
31 difeq2 4116 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
3231breq1d 5162 . . . 4 (𝑥 = 𝐵 → ((𝐴𝑥) ≼ ω ↔ (𝐴𝐵) ≼ ω))
3330, 32orbi12d 916 . . 3 (𝑥 = 𝐵 → ((𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω) ↔ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω)))
34 salexct2.2 . . 3 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
3533, 34elrab2 3687 . 2 (𝐵𝑆 ↔ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω)))
3629, 35mtbir 322 1 ¬ 𝐵𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 394  wo 845   = wceq 1533  wtru 1534  wcel 2098  {crab 3430  cdif 3946  𝒫 cpw 4606   class class class wbr 5152  (class class class)co 7426  ωcom 7878  cdom 8970  0cc0 11148  1c1 11149  *cxr 11287   < clt 11288  2c2 12307  (,]cioc 13367  [,]cicc 13369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-inf2 9674  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225  ax-pre-sup 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-2o 8496  df-oadd 8499  df-omul 8500  df-er 8733  df-map 8855  df-pm 8856  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-sup 9475  df-inf 9476  df-oi 9543  df-card 9972  df-acn 9975  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-div 11912  df-nn 12253  df-2 12315  df-3 12316  df-n0 12513  df-z 12599  df-uz 12863  df-q 12973  df-rp 13017  df-xneg 13134  df-xadd 13135  df-xmul 13136  df-ioo 13370  df-ioc 13371  df-ico 13372  df-icc 13373  df-fz 13527  df-fzo 13670  df-fl 13799  df-seq 14009  df-exp 14069  df-hash 14332  df-cj 15088  df-re 15089  df-im 15090  df-sqrt 15224  df-abs 15225  df-limsup 15457  df-clim 15474  df-rlim 15475  df-sum 15675  df-topgen 17434  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-top 22824  df-topon 22841  df-bases 22877  df-ntr 22952
This theorem is referenced by:  salexct3  45777  salgencntex  45778  salgensscntex  45779
  Copyright terms: Public domain W3C validator