![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salexct2 | Structured version Visualization version GIF version |
Description: An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct 46255. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
salexct2.1 | ⊢ 𝐴 = (0[,]2) |
salexct2.2 | ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} |
salexct2.3 | ⊢ 𝐵 = (0[,]1) |
Ref | Expression |
---|---|
salexct2 | ⊢ ¬ 𝐵 ∈ 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11337 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 0 ∈ ℝ*) |
3 | 1xr 11349 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
4 | 3 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 1 ∈ ℝ*) |
5 | 0lt1 11812 | . . . . . . . 8 ⊢ 0 < 1 | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 0 < 1) |
7 | salexct2.3 | . . . . . . 7 ⊢ 𝐵 = (0[,]1) | |
8 | 2, 4, 6, 7 | iccnct 45459 | . . . . . 6 ⊢ (⊤ → ¬ 𝐵 ≼ ω) |
9 | 8 | mptru 1544 | . . . . 5 ⊢ ¬ 𝐵 ≼ ω |
10 | 2re 12367 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
11 | 10 | rexri 11348 | . . . . . . . . 9 ⊢ 2 ∈ ℝ* |
12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 2 ∈ ℝ*) |
13 | 1lt2 12464 | . . . . . . . . 9 ⊢ 1 < 2 | |
14 | 13 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 1 < 2) |
15 | eqid 2740 | . . . . . . . 8 ⊢ (1(,]2) = (1(,]2) | |
16 | 4, 12, 14, 15 | iocnct 45458 | . . . . . . 7 ⊢ (⊤ → ¬ (1(,]2) ≼ ω) |
17 | 16 | mptru 1544 | . . . . . 6 ⊢ ¬ (1(,]2) ≼ ω |
18 | salexct2.1 | . . . . . . . . 9 ⊢ 𝐴 = (0[,]2) | |
19 | 18, 7 | difeq12i 4147 | . . . . . . . 8 ⊢ (𝐴 ∖ 𝐵) = ((0[,]2) ∖ (0[,]1)) |
20 | 2, 4, 6 | xrltled 13212 | . . . . . . . . . 10 ⊢ (⊤ → 0 ≤ 1) |
21 | 2, 4, 12, 20 | iccdificc 45457 | . . . . . . . . 9 ⊢ (⊤ → ((0[,]2) ∖ (0[,]1)) = (1(,]2)) |
22 | 21 | mptru 1544 | . . . . . . . 8 ⊢ ((0[,]2) ∖ (0[,]1)) = (1(,]2) |
23 | 19, 22 | eqtri 2768 | . . . . . . 7 ⊢ (𝐴 ∖ 𝐵) = (1(,]2) |
24 | 23 | breq1i 5173 | . . . . . 6 ⊢ ((𝐴 ∖ 𝐵) ≼ ω ↔ (1(,]2) ≼ ω) |
25 | 17, 24 | mtbir 323 | . . . . 5 ⊢ ¬ (𝐴 ∖ 𝐵) ≼ ω |
26 | 9, 25 | pm3.2i 470 | . . . 4 ⊢ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴 ∖ 𝐵) ≼ ω) |
27 | ioran 984 | . . . 4 ⊢ (¬ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω) ↔ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴 ∖ 𝐵) ≼ ω)) | |
28 | 26, 27 | mpbir 231 | . . 3 ⊢ ¬ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω) |
29 | 28 | intnan 486 | . 2 ⊢ ¬ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω)) |
30 | breq1 5169 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ≼ ω ↔ 𝐵 ≼ ω)) | |
31 | difeq2 4143 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝐵)) | |
32 | 31 | breq1d 5176 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ 𝐵) ≼ ω)) |
33 | 30, 32 | orbi12d 917 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω) ↔ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω))) |
34 | salexct2.2 | . . 3 ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} | |
35 | 33, 34 | elrab2 3711 | . 2 ⊢ (𝐵 ∈ 𝑆 ↔ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω))) |
36 | 29, 35 | mtbir 323 | 1 ⊢ ¬ 𝐵 ∈ 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 846 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 {crab 3443 ∖ cdif 3973 𝒫 cpw 4622 class class class wbr 5166 (class class class)co 7448 ωcom 7903 ≼ cdom 9001 0cc0 11184 1c1 11185 ℝ*cxr 11323 < clt 11324 2c2 12348 (,]cioc 13408 [,]cicc 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-top 22921 df-topon 22938 df-bases 22974 df-ntr 23049 |
This theorem is referenced by: salexct3 46263 salgencntex 46264 salgensscntex 46265 |
Copyright terms: Public domain | W3C validator |