Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salexct2 Structured version   Visualization version   GIF version

Theorem salexct2 45718
Description: An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct 45713. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salexct2.1 𝐴 = (0[,]2)
salexct2.2 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
salexct2.3 𝐵 = (0[,]1)
Assertion
Ref Expression
salexct2 ¬ 𝐵𝑆
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem salexct2
StepHypRef Expression
1 0xr 11286 . . . . . . . 8 0 ∈ ℝ*
21a1i 11 . . . . . . 7 (⊤ → 0 ∈ ℝ*)
3 1xr 11298 . . . . . . . 8 1 ∈ ℝ*
43a1i 11 . . . . . . 7 (⊤ → 1 ∈ ℝ*)
5 0lt1 11761 . . . . . . . 8 0 < 1
65a1i 11 . . . . . . 7 (⊤ → 0 < 1)
7 salexct2.3 . . . . . . 7 𝐵 = (0[,]1)
82, 4, 6, 7iccnct 44917 . . . . . 6 (⊤ → ¬ 𝐵 ≼ ω)
98mptru 1541 . . . . 5 ¬ 𝐵 ≼ ω
10 2re 12311 . . . . . . . . . 10 2 ∈ ℝ
1110rexri 11297 . . . . . . . . 9 2 ∈ ℝ*
1211a1i 11 . . . . . . . 8 (⊤ → 2 ∈ ℝ*)
13 1lt2 12408 . . . . . . . . 9 1 < 2
1413a1i 11 . . . . . . . 8 (⊤ → 1 < 2)
15 eqid 2728 . . . . . . . 8 (1(,]2) = (1(,]2)
164, 12, 14, 15iocnct 44916 . . . . . . 7 (⊤ → ¬ (1(,]2) ≼ ω)
1716mptru 1541 . . . . . 6 ¬ (1(,]2) ≼ ω
18 salexct2.1 . . . . . . . . 9 𝐴 = (0[,]2)
1918, 7difeq12i 4117 . . . . . . . 8 (𝐴𝐵) = ((0[,]2) ∖ (0[,]1))
202, 4, 6xrltled 13156 . . . . . . . . . 10 (⊤ → 0 ≤ 1)
212, 4, 12, 20iccdificc 44915 . . . . . . . . 9 (⊤ → ((0[,]2) ∖ (0[,]1)) = (1(,]2))
2221mptru 1541 . . . . . . . 8 ((0[,]2) ∖ (0[,]1)) = (1(,]2)
2319, 22eqtri 2756 . . . . . . 7 (𝐴𝐵) = (1(,]2)
2423breq1i 5150 . . . . . 6 ((𝐴𝐵) ≼ ω ↔ (1(,]2) ≼ ω)
2517, 24mtbir 323 . . . . 5 ¬ (𝐴𝐵) ≼ ω
269, 25pm3.2i 470 . . . 4 𝐵 ≼ ω ∧ ¬ (𝐴𝐵) ≼ ω)
27 ioran 982 . . . 4 (¬ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω) ↔ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴𝐵) ≼ ω))
2826, 27mpbir 230 . . 3 ¬ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω)
2928intnan 486 . 2 ¬ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω))
30 breq1 5146 . . . 4 (𝑥 = 𝐵 → (𝑥 ≼ ω ↔ 𝐵 ≼ ω))
31 difeq2 4113 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
3231breq1d 5153 . . . 4 (𝑥 = 𝐵 → ((𝐴𝑥) ≼ ω ↔ (𝐴𝐵) ≼ ω))
3330, 32orbi12d 917 . . 3 (𝑥 = 𝐵 → ((𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω) ↔ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω)))
34 salexct2.2 . . 3 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
3533, 34elrab2 3684 . 2 (𝐵𝑆 ↔ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω)))
3629, 35mtbir 323 1 ¬ 𝐵𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 846   = wceq 1534  wtru 1535  wcel 2099  {crab 3428  cdif 3942  𝒫 cpw 4599   class class class wbr 5143  (class class class)co 7415  ωcom 7865  cdom 8956  0cc0 11133  1c1 11134  *cxr 11272   < clt 11273  2c2 12292  (,]cioc 13352  [,]cicc 13354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-2o 8482  df-oadd 8485  df-omul 8486  df-er 8719  df-map 8841  df-pm 8842  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-sup 9460  df-inf 9461  df-oi 9528  df-card 9957  df-acn 9960  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-z 12584  df-uz 12848  df-q 12958  df-rp 13002  df-xneg 13119  df-xadd 13120  df-xmul 13121  df-ioo 13355  df-ioc 13356  df-ico 13357  df-icc 13358  df-fz 13512  df-fzo 13655  df-fl 13784  df-seq 13994  df-exp 14054  df-hash 14317  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-limsup 15442  df-clim 15459  df-rlim 15460  df-sum 15660  df-topgen 17419  df-psmet 21265  df-xmet 21266  df-met 21267  df-bl 21268  df-mopn 21269  df-top 22790  df-topon 22807  df-bases 22843  df-ntr 22918
This theorem is referenced by:  salexct3  45721  salgencntex  45722  salgensscntex  45723
  Copyright terms: Public domain W3C validator