Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salexct2 Structured version   Visualization version   GIF version

Theorem salexct2 43878
Description: An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct 43873. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salexct2.1 𝐴 = (0[,]2)
salexct2.2 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
salexct2.3 𝐵 = (0[,]1)
Assertion
Ref Expression
salexct2 ¬ 𝐵𝑆
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem salexct2
StepHypRef Expression
1 0xr 11022 . . . . . . . 8 0 ∈ ℝ*
21a1i 11 . . . . . . 7 (⊤ → 0 ∈ ℝ*)
3 1xr 11034 . . . . . . . 8 1 ∈ ℝ*
43a1i 11 . . . . . . 7 (⊤ → 1 ∈ ℝ*)
5 0lt1 11497 . . . . . . . 8 0 < 1
65a1i 11 . . . . . . 7 (⊤ → 0 < 1)
7 salexct2.3 . . . . . . 7 𝐵 = (0[,]1)
82, 4, 6, 7iccnct 43079 . . . . . 6 (⊤ → ¬ 𝐵 ≼ ω)
98mptru 1546 . . . . 5 ¬ 𝐵 ≼ ω
10 2re 12047 . . . . . . . . . 10 2 ∈ ℝ
1110rexri 11033 . . . . . . . . 9 2 ∈ ℝ*
1211a1i 11 . . . . . . . 8 (⊤ → 2 ∈ ℝ*)
13 1lt2 12144 . . . . . . . . 9 1 < 2
1413a1i 11 . . . . . . . 8 (⊤ → 1 < 2)
15 eqid 2738 . . . . . . . 8 (1(,]2) = (1(,]2)
164, 12, 14, 15iocnct 43078 . . . . . . 7 (⊤ → ¬ (1(,]2) ≼ ω)
1716mptru 1546 . . . . . 6 ¬ (1(,]2) ≼ ω
18 salexct2.1 . . . . . . . . 9 𝐴 = (0[,]2)
1918, 7difeq12i 4055 . . . . . . . 8 (𝐴𝐵) = ((0[,]2) ∖ (0[,]1))
202, 4, 6xrltled 12884 . . . . . . . . . 10 (⊤ → 0 ≤ 1)
212, 4, 12, 20iccdificc 43077 . . . . . . . . 9 (⊤ → ((0[,]2) ∖ (0[,]1)) = (1(,]2))
2221mptru 1546 . . . . . . . 8 ((0[,]2) ∖ (0[,]1)) = (1(,]2)
2319, 22eqtri 2766 . . . . . . 7 (𝐴𝐵) = (1(,]2)
2423breq1i 5081 . . . . . 6 ((𝐴𝐵) ≼ ω ↔ (1(,]2) ≼ ω)
2517, 24mtbir 323 . . . . 5 ¬ (𝐴𝐵) ≼ ω
269, 25pm3.2i 471 . . . 4 𝐵 ≼ ω ∧ ¬ (𝐴𝐵) ≼ ω)
27 ioran 981 . . . 4 (¬ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω) ↔ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴𝐵) ≼ ω))
2826, 27mpbir 230 . . 3 ¬ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω)
2928intnan 487 . 2 ¬ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω))
30 breq1 5077 . . . 4 (𝑥 = 𝐵 → (𝑥 ≼ ω ↔ 𝐵 ≼ ω))
31 difeq2 4051 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
3231breq1d 5084 . . . 4 (𝑥 = 𝐵 → ((𝐴𝑥) ≼ ω ↔ (𝐴𝐵) ≼ ω))
3330, 32orbi12d 916 . . 3 (𝑥 = 𝐵 → ((𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω) ↔ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω)))
34 salexct2.2 . . 3 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
3533, 34elrab2 3627 . 2 (𝐵𝑆 ↔ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴𝐵) ≼ ω)))
3629, 35mtbir 323 1 ¬ 𝐵𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396  wo 844   = wceq 1539  wtru 1540  wcel 2106  {crab 3068  cdif 3884  𝒫 cpw 4533   class class class wbr 5074  (class class class)co 7275  ωcom 7712  cdom 8731  0cc0 10871  1c1 10872  *cxr 11008   < clt 11009  2c2 12028  (,]cioc 13080  [,]cicc 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-ntr 22171
This theorem is referenced by:  salexct3  43881  salgencntex  43882  salgensscntex  43883
  Copyright terms: Public domain W3C validator