Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infdju1 | Structured version Visualization version GIF version |
Description: An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
infdju1 | ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difun2 4411 | . . . . 5 ⊢ ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) = (({∅} × 𝐴) ∖ ({1o} × 1o)) | |
2 | df-dju 9590 | . . . . . 6 ⊢ (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o)) | |
3 | df1o2 8279 | . . . . . . . 8 ⊢ 1o = {∅} | |
4 | 3 | xpeq2i 5607 | . . . . . . 7 ⊢ ({1o} × 1o) = ({1o} × {∅}) |
5 | 1oex 8280 | . . . . . . . 8 ⊢ 1o ∈ V | |
6 | 0ex 5226 | . . . . . . . 8 ⊢ ∅ ∈ V | |
7 | 5, 6 | xpsn 6995 | . . . . . . 7 ⊢ ({1o} × {∅}) = {〈1o, ∅〉} |
8 | 4, 7 | eqtr2i 2767 | . . . . . 6 ⊢ {〈1o, ∅〉} = ({1o} × 1o) |
9 | 2, 8 | difeq12i 4051 | . . . . 5 ⊢ ((𝐴 ⊔ 1o) ∖ {〈1o, ∅〉}) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) |
10 | xp01disjl 8288 | . . . . . 6 ⊢ (({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ | |
11 | disj3 4384 | . . . . . 6 ⊢ ((({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ ↔ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o))) | |
12 | 10, 11 | mpbi 229 | . . . . 5 ⊢ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o)) |
13 | 1, 9, 12 | 3eqtr4i 2776 | . . . 4 ⊢ ((𝐴 ⊔ 1o) ∖ {〈1o, ∅〉}) = ({∅} × 𝐴) |
14 | reldom 8697 | . . . . . . . 8 ⊢ Rel ≼ | |
15 | 14 | brrelex2i 5635 | . . . . . . 7 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
16 | 1on 8274 | . . . . . . 7 ⊢ 1o ∈ On | |
17 | djudoml 9871 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 1o ∈ On) → 𝐴 ≼ (𝐴 ⊔ 1o)) | |
18 | 15, 16, 17 | sylancl 585 | . . . . . 6 ⊢ (ω ≼ 𝐴 → 𝐴 ≼ (𝐴 ⊔ 1o)) |
19 | domtr 8748 | . . . . . 6 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ≼ (𝐴 ⊔ 1o)) → ω ≼ (𝐴 ⊔ 1o)) | |
20 | 18, 19 | mpdan 683 | . . . . 5 ⊢ (ω ≼ 𝐴 → ω ≼ (𝐴 ⊔ 1o)) |
21 | infdifsn 9345 | . . . . 5 ⊢ (ω ≼ (𝐴 ⊔ 1o) → ((𝐴 ⊔ 1o) ∖ {〈1o, ∅〉}) ≈ (𝐴 ⊔ 1o)) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (ω ≼ 𝐴 → ((𝐴 ⊔ 1o) ∖ {〈1o, ∅〉}) ≈ (𝐴 ⊔ 1o)) |
23 | 13, 22 | eqbrtrrid 5106 | . . 3 ⊢ (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o)) |
24 | 23 | ensymd 8746 | . 2 ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ ({∅} × 𝐴)) |
25 | xpsnen2g 8805 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴) | |
26 | 6, 15, 25 | sylancr 586 | . 2 ⊢ (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ 𝐴) |
27 | entr 8747 | . 2 ⊢ (((𝐴 ⊔ 1o) ≈ ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≈ 𝐴) → (𝐴 ⊔ 1o) ≈ 𝐴) | |
28 | 24, 26, 27 | syl2anc 583 | 1 ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 {csn 4558 〈cop 4564 class class class wbr 5070 × cxp 5578 Oncon0 6251 ωcom 7687 1oc1o 8260 ≈ cen 8688 ≼ cdom 8689 ⊔ cdju 9587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1st 7804 df-2nd 7805 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-dju 9590 |
This theorem is referenced by: pwdjuidm 9878 isfin4p1 10002 canthp1lem2 10340 |
Copyright terms: Public domain | W3C validator |