![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infdju1 | Structured version Visualization version GIF version |
Description: An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
infdju1 | ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difun2 4479 | . . . . 5 ⊢ ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) = (({∅} × 𝐴) ∖ ({1o} × 1o)) | |
2 | df-dju 9892 | . . . . . 6 ⊢ (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o)) | |
3 | df1o2 8469 | . . . . . . . 8 ⊢ 1o = {∅} | |
4 | 3 | xpeq2i 5702 | . . . . . . 7 ⊢ ({1o} × 1o) = ({1o} × {∅}) |
5 | 1oex 8472 | . . . . . . . 8 ⊢ 1o ∈ V | |
6 | 0ex 5306 | . . . . . . . 8 ⊢ ∅ ∈ V | |
7 | 5, 6 | xpsn 7135 | . . . . . . 7 ⊢ ({1o} × {∅}) = {⟨1o, ∅⟩} |
8 | 4, 7 | eqtr2i 2761 | . . . . . 6 ⊢ {⟨1o, ∅⟩} = ({1o} × 1o) |
9 | 2, 8 | difeq12i 4119 | . . . . 5 ⊢ ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) |
10 | xp01disjl 8488 | . . . . . 6 ⊢ (({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ | |
11 | disj3 4452 | . . . . . 6 ⊢ ((({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ ↔ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o))) | |
12 | 10, 11 | mpbi 229 | . . . . 5 ⊢ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o)) |
13 | 1, 9, 12 | 3eqtr4i 2770 | . . . 4 ⊢ ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ({∅} × 𝐴) |
14 | reldom 8941 | . . . . . . . 8 ⊢ Rel ≼ | |
15 | 14 | brrelex2i 5731 | . . . . . . 7 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
16 | 1on 8474 | . . . . . . 7 ⊢ 1o ∈ On | |
17 | djudoml 10175 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 1o ∈ On) → 𝐴 ≼ (𝐴 ⊔ 1o)) | |
18 | 15, 16, 17 | sylancl 586 | . . . . . 6 ⊢ (ω ≼ 𝐴 → 𝐴 ≼ (𝐴 ⊔ 1o)) |
19 | domtr 8999 | . . . . . 6 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ≼ (𝐴 ⊔ 1o)) → ω ≼ (𝐴 ⊔ 1o)) | |
20 | 18, 19 | mpdan 685 | . . . . 5 ⊢ (ω ≼ 𝐴 → ω ≼ (𝐴 ⊔ 1o)) |
21 | infdifsn 9648 | . . . . 5 ⊢ (ω ≼ (𝐴 ⊔ 1o) → ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ (𝐴 ⊔ 1o)) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (ω ≼ 𝐴 → ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ (𝐴 ⊔ 1o)) |
23 | 13, 22 | eqbrtrrid 5183 | . . 3 ⊢ (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o)) |
24 | 23 | ensymd 8997 | . 2 ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ ({∅} × 𝐴)) |
25 | xpsnen2g 9061 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴) | |
26 | 6, 15, 25 | sylancr 587 | . 2 ⊢ (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ 𝐴) |
27 | entr 8998 | . 2 ⊢ (((𝐴 ⊔ 1o) ≈ ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≈ 𝐴) → (𝐴 ⊔ 1o) ≈ 𝐴) | |
28 | 24, 26, 27 | syl2anc 584 | 1 ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 ∅c0 4321 {csn 4627 ⟨cop 4633 class class class wbr 5147 × cxp 5673 Oncon0 6361 ωcom 7851 1oc1o 8455 ≈ cen 8932 ≼ cdom 8933 ⊔ cdju 9889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-om 7852 df-1st 7971 df-2nd 7972 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-dju 9892 |
This theorem is referenced by: pwdjuidm 10182 isfin4p1 10306 canthp1lem2 10644 |
Copyright terms: Public domain | W3C validator |