![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infdju1 | Structured version Visualization version GIF version |
Description: An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
infdju1 | ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difun2 4475 | . . . . 5 ⊢ ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) = (({∅} × 𝐴) ∖ ({1o} × 1o)) | |
2 | df-dju 9895 | . . . . . 6 ⊢ (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o)) | |
3 | df1o2 8471 | . . . . . . . 8 ⊢ 1o = {∅} | |
4 | 3 | xpeq2i 5696 | . . . . . . 7 ⊢ ({1o} × 1o) = ({1o} × {∅}) |
5 | 1oex 8474 | . . . . . . . 8 ⊢ 1o ∈ V | |
6 | 0ex 5300 | . . . . . . . 8 ⊢ ∅ ∈ V | |
7 | 5, 6 | xpsn 7134 | . . . . . . 7 ⊢ ({1o} × {∅}) = {⟨1o, ∅⟩} |
8 | 4, 7 | eqtr2i 2755 | . . . . . 6 ⊢ {⟨1o, ∅⟩} = ({1o} × 1o) |
9 | 2, 8 | difeq12i 4115 | . . . . 5 ⊢ ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) |
10 | xp01disjl 8490 | . . . . . 6 ⊢ (({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ | |
11 | disj3 4448 | . . . . . 6 ⊢ ((({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ ↔ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o))) | |
12 | 10, 11 | mpbi 229 | . . . . 5 ⊢ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o)) |
13 | 1, 9, 12 | 3eqtr4i 2764 | . . . 4 ⊢ ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ({∅} × 𝐴) |
14 | reldom 8944 | . . . . . . . 8 ⊢ Rel ≼ | |
15 | 14 | brrelex2i 5726 | . . . . . . 7 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
16 | 1on 8476 | . . . . . . 7 ⊢ 1o ∈ On | |
17 | djudoml 10178 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 1o ∈ On) → 𝐴 ≼ (𝐴 ⊔ 1o)) | |
18 | 15, 16, 17 | sylancl 585 | . . . . . 6 ⊢ (ω ≼ 𝐴 → 𝐴 ≼ (𝐴 ⊔ 1o)) |
19 | domtr 9002 | . . . . . 6 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ≼ (𝐴 ⊔ 1o)) → ω ≼ (𝐴 ⊔ 1o)) | |
20 | 18, 19 | mpdan 684 | . . . . 5 ⊢ (ω ≼ 𝐴 → ω ≼ (𝐴 ⊔ 1o)) |
21 | infdifsn 9651 | . . . . 5 ⊢ (ω ≼ (𝐴 ⊔ 1o) → ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ (𝐴 ⊔ 1o)) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (ω ≼ 𝐴 → ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ (𝐴 ⊔ 1o)) |
23 | 13, 22 | eqbrtrrid 5177 | . . 3 ⊢ (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o)) |
24 | 23 | ensymd 9000 | . 2 ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ ({∅} × 𝐴)) |
25 | xpsnen2g 9064 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴) | |
26 | 6, 15, 25 | sylancr 586 | . 2 ⊢ (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ 𝐴) |
27 | entr 9001 | . 2 ⊢ (((𝐴 ⊔ 1o) ≈ ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≈ 𝐴) → (𝐴 ⊔ 1o) ≈ 𝐴) | |
28 | 24, 26, 27 | syl2anc 583 | 1 ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ∖ cdif 3940 ∪ cun 3941 ∩ cin 3942 ∅c0 4317 {csn 4623 ⟨cop 4629 class class class wbr 5141 × cxp 5667 Oncon0 6357 ωcom 7851 1oc1o 8457 ≈ cen 8935 ≼ cdom 8936 ⊔ cdju 9892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7852 df-1st 7971 df-2nd 7972 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-dju 9895 |
This theorem is referenced by: pwdjuidm 10185 isfin4p1 10309 canthp1lem2 10647 |
Copyright terms: Public domain | W3C validator |