MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdju1 Structured version   Visualization version   GIF version

Theorem infdju1 10209
Description: An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
infdju1 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)

Proof of Theorem infdju1
StepHypRef Expression
1 difun2 4461 . . . . 5 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) = (({∅} × 𝐴) ∖ ({1o} × 1o))
2 df-dju 9920 . . . . . 6 (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o))
3 df1o2 8492 . . . . . . . 8 1o = {∅}
43xpeq2i 5686 . . . . . . 7 ({1o} × 1o) = ({1o} × {∅})
5 1oex 8495 . . . . . . . 8 1o ∈ V
6 0ex 5282 . . . . . . . 8 ∅ ∈ V
75, 6xpsn 7136 . . . . . . 7 ({1o} × {∅}) = {⟨1o, ∅⟩}
84, 7eqtr2i 2760 . . . . . 6 {⟨1o, ∅⟩} = ({1o} × 1o)
92, 8difeq12i 4104 . . . . 5 ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o))
10 xp01disjl 8509 . . . . . 6 (({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅
11 disj3 4434 . . . . . 6 ((({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ ↔ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o)))
1210, 11mpbi 230 . . . . 5 ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o))
131, 9, 123eqtr4i 2769 . . . 4 ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ({∅} × 𝐴)
14 reldom 8970 . . . . . . . 8 Rel ≼
1514brrelex2i 5716 . . . . . . 7 (ω ≼ 𝐴𝐴 ∈ V)
16 1on 8497 . . . . . . 7 1o ∈ On
17 djudoml 10204 . . . . . . 7 ((𝐴 ∈ V ∧ 1o ∈ On) → 𝐴 ≼ (𝐴 ⊔ 1o))
1815, 16, 17sylancl 586 . . . . . 6 (ω ≼ 𝐴𝐴 ≼ (𝐴 ⊔ 1o))
19 domtr 9026 . . . . . 6 ((ω ≼ 𝐴𝐴 ≼ (𝐴 ⊔ 1o)) → ω ≼ (𝐴 ⊔ 1o))
2018, 19mpdan 687 . . . . 5 (ω ≼ 𝐴 → ω ≼ (𝐴 ⊔ 1o))
21 infdifsn 9676 . . . . 5 (ω ≼ (𝐴 ⊔ 1o) → ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ (𝐴 ⊔ 1o))
2220, 21syl 17 . . . 4 (ω ≼ 𝐴 → ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ (𝐴 ⊔ 1o))
2313, 22eqbrtrrid 5160 . . 3 (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o))
2423ensymd 9024 . 2 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ ({∅} × 𝐴))
25 xpsnen2g 9084 . . 3 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
266, 15, 25sylancr 587 . 2 (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ 𝐴)
27 entr 9025 . 2 (((𝐴 ⊔ 1o) ≈ ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≈ 𝐴) → (𝐴 ⊔ 1o) ≈ 𝐴)
2824, 26, 27syl2anc 584 1 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  cdif 3928  cun 3929  cin 3930  c0 4313  {csn 4606  cop 4612   class class class wbr 5124   × cxp 5657  Oncon0 6357  ωcom 7866  1oc1o 8478  cen 8961  cdom 8962  cdju 9917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1st 7993  df-2nd 7994  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-dju 9920
This theorem is referenced by:  pwdjuidm  10211  isfin4p1  10334  canthp1lem2  10672
  Copyright terms: Public domain W3C validator