| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infdju1 | Structured version Visualization version GIF version | ||
| Description: An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| infdju1 | ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difun2 4428 | . . . . 5 ⊢ ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) = (({∅} × 𝐴) ∖ ({1o} × 1o)) | |
| 2 | df-dju 9794 | . . . . . 6 ⊢ (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o)) | |
| 3 | df1o2 8392 | . . . . . . . 8 ⊢ 1o = {∅} | |
| 4 | 3 | xpeq2i 5641 | . . . . . . 7 ⊢ ({1o} × 1o) = ({1o} × {∅}) |
| 5 | 1oex 8395 | . . . . . . . 8 ⊢ 1o ∈ V | |
| 6 | 0ex 5243 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 7 | 5, 6 | xpsn 7074 | . . . . . . 7 ⊢ ({1o} × {∅}) = {〈1o, ∅〉} |
| 8 | 4, 7 | eqtr2i 2755 | . . . . . 6 ⊢ {〈1o, ∅〉} = ({1o} × 1o) |
| 9 | 2, 8 | difeq12i 4071 | . . . . 5 ⊢ ((𝐴 ⊔ 1o) ∖ {〈1o, ∅〉}) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) |
| 10 | xp01disjl 8407 | . . . . . 6 ⊢ (({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ | |
| 11 | disj3 4401 | . . . . . 6 ⊢ ((({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ ↔ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o))) | |
| 12 | 10, 11 | mpbi 230 | . . . . 5 ⊢ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o)) |
| 13 | 1, 9, 12 | 3eqtr4i 2764 | . . . 4 ⊢ ((𝐴 ⊔ 1o) ∖ {〈1o, ∅〉}) = ({∅} × 𝐴) |
| 14 | reldom 8875 | . . . . . . . 8 ⊢ Rel ≼ | |
| 15 | 14 | brrelex2i 5671 | . . . . . . 7 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
| 16 | 1on 8397 | . . . . . . 7 ⊢ 1o ∈ On | |
| 17 | djudoml 10076 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 1o ∈ On) → 𝐴 ≼ (𝐴 ⊔ 1o)) | |
| 18 | 15, 16, 17 | sylancl 586 | . . . . . 6 ⊢ (ω ≼ 𝐴 → 𝐴 ≼ (𝐴 ⊔ 1o)) |
| 19 | domtr 8929 | . . . . . 6 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ≼ (𝐴 ⊔ 1o)) → ω ≼ (𝐴 ⊔ 1o)) | |
| 20 | 18, 19 | mpdan 687 | . . . . 5 ⊢ (ω ≼ 𝐴 → ω ≼ (𝐴 ⊔ 1o)) |
| 21 | infdifsn 9547 | . . . . 5 ⊢ (ω ≼ (𝐴 ⊔ 1o) → ((𝐴 ⊔ 1o) ∖ {〈1o, ∅〉}) ≈ (𝐴 ⊔ 1o)) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (ω ≼ 𝐴 → ((𝐴 ⊔ 1o) ∖ {〈1o, ∅〉}) ≈ (𝐴 ⊔ 1o)) |
| 23 | 13, 22 | eqbrtrrid 5125 | . . 3 ⊢ (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o)) |
| 24 | 23 | ensymd 8927 | . 2 ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ ({∅} × 𝐴)) |
| 25 | xpsnen2g 8983 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴) | |
| 26 | 6, 15, 25 | sylancr 587 | . 2 ⊢ (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ 𝐴) |
| 27 | entr 8928 | . 2 ⊢ (((𝐴 ⊔ 1o) ≈ ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≈ 𝐴) → (𝐴 ⊔ 1o) ≈ 𝐴) | |
| 28 | 24, 26, 27 | syl2anc 584 | 1 ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 ∅c0 4280 {csn 4573 〈cop 4579 class class class wbr 5089 × cxp 5612 Oncon0 6306 ωcom 7796 1oc1o 8378 ≈ cen 8866 ≼ cdom 8867 ⊔ cdju 9791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1st 7921 df-2nd 7922 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-dju 9794 |
| This theorem is referenced by: pwdjuidm 10083 isfin4p1 10206 canthp1lem2 10544 |
| Copyright terms: Public domain | W3C validator |