MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdju1 Structured version   Visualization version   GIF version

Theorem infdju1 10220
Description: An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
infdju1 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)

Proof of Theorem infdju1
StepHypRef Expression
1 difun2 4484 . . . . 5 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) = (({∅} × 𝐴) ∖ ({1o} × 1o))
2 df-dju 9932 . . . . . 6 (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o))
3 df1o2 8500 . . . . . . . 8 1o = {∅}
43xpeq2i 5709 . . . . . . 7 ({1o} × 1o) = ({1o} × {∅})
5 1oex 8503 . . . . . . . 8 1o ∈ V
6 0ex 5311 . . . . . . . 8 ∅ ∈ V
75, 6xpsn 7156 . . . . . . 7 ({1o} × {∅}) = {⟨1o, ∅⟩}
84, 7eqtr2i 2757 . . . . . 6 {⟨1o, ∅⟩} = ({1o} × 1o)
92, 8difeq12i 4120 . . . . 5 ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o))
10 xp01disjl 8519 . . . . . 6 (({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅
11 disj3 4457 . . . . . 6 ((({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ ↔ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o)))
1210, 11mpbi 229 . . . . 5 ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o))
131, 9, 123eqtr4i 2766 . . . 4 ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ({∅} × 𝐴)
14 reldom 8976 . . . . . . . 8 Rel ≼
1514brrelex2i 5739 . . . . . . 7 (ω ≼ 𝐴𝐴 ∈ V)
16 1on 8505 . . . . . . 7 1o ∈ On
17 djudoml 10215 . . . . . . 7 ((𝐴 ∈ V ∧ 1o ∈ On) → 𝐴 ≼ (𝐴 ⊔ 1o))
1815, 16, 17sylancl 584 . . . . . 6 (ω ≼ 𝐴𝐴 ≼ (𝐴 ⊔ 1o))
19 domtr 9034 . . . . . 6 ((ω ≼ 𝐴𝐴 ≼ (𝐴 ⊔ 1o)) → ω ≼ (𝐴 ⊔ 1o))
2018, 19mpdan 685 . . . . 5 (ω ≼ 𝐴 → ω ≼ (𝐴 ⊔ 1o))
21 infdifsn 9688 . . . . 5 (ω ≼ (𝐴 ⊔ 1o) → ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ (𝐴 ⊔ 1o))
2220, 21syl 17 . . . 4 (ω ≼ 𝐴 → ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ (𝐴 ⊔ 1o))
2313, 22eqbrtrrid 5188 . . 3 (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o))
2423ensymd 9032 . 2 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ ({∅} × 𝐴))
25 xpsnen2g 9096 . . 3 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
266, 15, 25sylancr 585 . 2 (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ 𝐴)
27 entr 9033 . 2 (((𝐴 ⊔ 1o) ≈ ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≈ 𝐴) → (𝐴 ⊔ 1o) ≈ 𝐴)
2824, 26, 27syl2anc 582 1 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3473  cdif 3946  cun 3947  cin 3948  c0 4326  {csn 4632  cop 4638   class class class wbr 5152   × cxp 5680  Oncon0 6374  ωcom 7876  1oc1o 8486  cen 8967  cdom 8968  cdju 9929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-om 7877  df-1st 7999  df-2nd 8000  df-1o 8493  df-er 8731  df-en 8971  df-dom 8972  df-dju 9932
This theorem is referenced by:  pwdjuidm  10222  isfin4p1  10346  canthp1lem2  10684
  Copyright terms: Public domain W3C validator