MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdju1 Structured version   Visualization version   GIF version

Theorem infdju1 9607
Description: An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
infdju1 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)

Proof of Theorem infdju1
StepHypRef Expression
1 difun2 4427 . . . . 5 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) = (({∅} × 𝐴) ∖ ({1o} × 1o))
2 df-dju 9322 . . . . . 6 (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o))
3 df1o2 8108 . . . . . . . 8 1o = {∅}
43xpeq2i 5575 . . . . . . 7 ({1o} × 1o) = ({1o} × {∅})
5 1oex 8102 . . . . . . . 8 1o ∈ V
6 0ex 5202 . . . . . . . 8 ∅ ∈ V
75, 6xpsn 6896 . . . . . . 7 ({1o} × {∅}) = {⟨1o, ∅⟩}
84, 7eqtr2i 2843 . . . . . 6 {⟨1o, ∅⟩} = ({1o} × 1o)
92, 8difeq12i 4095 . . . . 5 ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o))
10 xp01disjl 8113 . . . . . 6 (({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅
11 disj3 4401 . . . . . 6 ((({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ ↔ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o)))
1210, 11mpbi 232 . . . . 5 ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o))
131, 9, 123eqtr4i 2852 . . . 4 ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ({∅} × 𝐴)
14 reldom 8507 . . . . . . . 8 Rel ≼
1514brrelex2i 5602 . . . . . . 7 (ω ≼ 𝐴𝐴 ∈ V)
16 1on 8101 . . . . . . 7 1o ∈ On
17 djudoml 9602 . . . . . . 7 ((𝐴 ∈ V ∧ 1o ∈ On) → 𝐴 ≼ (𝐴 ⊔ 1o))
1815, 16, 17sylancl 588 . . . . . 6 (ω ≼ 𝐴𝐴 ≼ (𝐴 ⊔ 1o))
19 domtr 8554 . . . . . 6 ((ω ≼ 𝐴𝐴 ≼ (𝐴 ⊔ 1o)) → ω ≼ (𝐴 ⊔ 1o))
2018, 19mpdan 685 . . . . 5 (ω ≼ 𝐴 → ω ≼ (𝐴 ⊔ 1o))
21 infdifsn 9112 . . . . 5 (ω ≼ (𝐴 ⊔ 1o) → ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ (𝐴 ⊔ 1o))
2220, 21syl 17 . . . 4 (ω ≼ 𝐴 → ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ (𝐴 ⊔ 1o))
2313, 22eqbrtrrid 5093 . . 3 (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o))
2423ensymd 8552 . 2 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ ({∅} × 𝐴))
25 xpsnen2g 8602 . . 3 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
266, 15, 25sylancr 589 . 2 (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ 𝐴)
27 entr 8553 . 2 (((𝐴 ⊔ 1o) ≈ ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≈ 𝐴) → (𝐴 ⊔ 1o) ≈ 𝐴)
2824, 26, 27syl2anc 586 1 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  Vcvv 3493  cdif 3931  cun 3932  cin 3933  c0 4289  {csn 4559  cop 4565   class class class wbr 5057   × cxp 5546  Oncon0 6184  ωcom 7572  1oc1o 8087  cen 8498  cdom 8499  cdju 9319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7573  df-1st 7681  df-2nd 7682  df-1o 8094  df-er 8281  df-en 8502  df-dom 8503  df-dju 9322
This theorem is referenced by:  pwdjuidm  9609  isfin4p1  9729  canthp1lem2  10067
  Copyright terms: Public domain W3C validator