MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdju1 Structured version   Visualization version   GIF version

Theorem infdju1 9876
Description: An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
infdju1 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)

Proof of Theorem infdju1
StepHypRef Expression
1 difun2 4411 . . . . 5 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) = (({∅} × 𝐴) ∖ ({1o} × 1o))
2 df-dju 9590 . . . . . 6 (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o))
3 df1o2 8279 . . . . . . . 8 1o = {∅}
43xpeq2i 5607 . . . . . . 7 ({1o} × 1o) = ({1o} × {∅})
5 1oex 8280 . . . . . . . 8 1o ∈ V
6 0ex 5226 . . . . . . . 8 ∅ ∈ V
75, 6xpsn 6995 . . . . . . 7 ({1o} × {∅}) = {⟨1o, ∅⟩}
84, 7eqtr2i 2767 . . . . . 6 {⟨1o, ∅⟩} = ({1o} × 1o)
92, 8difeq12i 4051 . . . . 5 ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o))
10 xp01disjl 8288 . . . . . 6 (({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅
11 disj3 4384 . . . . . 6 ((({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ ↔ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o)))
1210, 11mpbi 229 . . . . 5 ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o))
131, 9, 123eqtr4i 2776 . . . 4 ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ({∅} × 𝐴)
14 reldom 8697 . . . . . . . 8 Rel ≼
1514brrelex2i 5635 . . . . . . 7 (ω ≼ 𝐴𝐴 ∈ V)
16 1on 8274 . . . . . . 7 1o ∈ On
17 djudoml 9871 . . . . . . 7 ((𝐴 ∈ V ∧ 1o ∈ On) → 𝐴 ≼ (𝐴 ⊔ 1o))
1815, 16, 17sylancl 585 . . . . . 6 (ω ≼ 𝐴𝐴 ≼ (𝐴 ⊔ 1o))
19 domtr 8748 . . . . . 6 ((ω ≼ 𝐴𝐴 ≼ (𝐴 ⊔ 1o)) → ω ≼ (𝐴 ⊔ 1o))
2018, 19mpdan 683 . . . . 5 (ω ≼ 𝐴 → ω ≼ (𝐴 ⊔ 1o))
21 infdifsn 9345 . . . . 5 (ω ≼ (𝐴 ⊔ 1o) → ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ (𝐴 ⊔ 1o))
2220, 21syl 17 . . . 4 (ω ≼ 𝐴 → ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ (𝐴 ⊔ 1o))
2313, 22eqbrtrrid 5106 . . 3 (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o))
2423ensymd 8746 . 2 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ ({∅} × 𝐴))
25 xpsnen2g 8805 . . 3 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
266, 15, 25sylancr 586 . 2 (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ 𝐴)
27 entr 8747 . 2 (((𝐴 ⊔ 1o) ≈ ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≈ 𝐴) → (𝐴 ⊔ 1o) ≈ 𝐴)
2824, 26, 27syl2anc 583 1 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  cin 3882  c0 4253  {csn 4558  cop 4564   class class class wbr 5070   × cxp 5578  Oncon0 6251  ωcom 7687  1oc1o 8260  cen 8688  cdom 8689  cdju 9587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-dju 9590
This theorem is referenced by:  pwdjuidm  9878  isfin4p1  10002  canthp1lem2  10340
  Copyright terms: Public domain W3C validator