| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infdju1 | Structured version Visualization version GIF version | ||
| Description: An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| infdju1 | ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difun2 4432 | . . . . 5 ⊢ ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) = (({∅} × 𝐴) ∖ ({1o} × 1o)) | |
| 2 | df-dju 9797 | . . . . . 6 ⊢ (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o)) | |
| 3 | df1o2 8395 | . . . . . . . 8 ⊢ 1o = {∅} | |
| 4 | 3 | xpeq2i 5646 | . . . . . . 7 ⊢ ({1o} × 1o) = ({1o} × {∅}) |
| 5 | 1oex 8398 | . . . . . . . 8 ⊢ 1o ∈ V | |
| 6 | 0ex 5246 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 7 | 5, 6 | xpsn 7075 | . . . . . . 7 ⊢ ({1o} × {∅}) = {〈1o, ∅〉} |
| 8 | 4, 7 | eqtr2i 2753 | . . . . . 6 ⊢ {〈1o, ∅〉} = ({1o} × 1o) |
| 9 | 2, 8 | difeq12i 4075 | . . . . 5 ⊢ ((𝐴 ⊔ 1o) ∖ {〈1o, ∅〉}) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) |
| 10 | xp01disjl 8410 | . . . . . 6 ⊢ (({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ | |
| 11 | disj3 4405 | . . . . . 6 ⊢ ((({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ ↔ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o))) | |
| 12 | 10, 11 | mpbi 230 | . . . . 5 ⊢ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o)) |
| 13 | 1, 9, 12 | 3eqtr4i 2762 | . . . 4 ⊢ ((𝐴 ⊔ 1o) ∖ {〈1o, ∅〉}) = ({∅} × 𝐴) |
| 14 | reldom 8878 | . . . . . . . 8 ⊢ Rel ≼ | |
| 15 | 14 | brrelex2i 5676 | . . . . . . 7 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
| 16 | 1on 8400 | . . . . . . 7 ⊢ 1o ∈ On | |
| 17 | djudoml 10079 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 1o ∈ On) → 𝐴 ≼ (𝐴 ⊔ 1o)) | |
| 18 | 15, 16, 17 | sylancl 586 | . . . . . 6 ⊢ (ω ≼ 𝐴 → 𝐴 ≼ (𝐴 ⊔ 1o)) |
| 19 | domtr 8932 | . . . . . 6 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ≼ (𝐴 ⊔ 1o)) → ω ≼ (𝐴 ⊔ 1o)) | |
| 20 | 18, 19 | mpdan 687 | . . . . 5 ⊢ (ω ≼ 𝐴 → ω ≼ (𝐴 ⊔ 1o)) |
| 21 | infdifsn 9553 | . . . . 5 ⊢ (ω ≼ (𝐴 ⊔ 1o) → ((𝐴 ⊔ 1o) ∖ {〈1o, ∅〉}) ≈ (𝐴 ⊔ 1o)) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (ω ≼ 𝐴 → ((𝐴 ⊔ 1o) ∖ {〈1o, ∅〉}) ≈ (𝐴 ⊔ 1o)) |
| 23 | 13, 22 | eqbrtrrid 5128 | . . 3 ⊢ (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o)) |
| 24 | 23 | ensymd 8930 | . 2 ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ ({∅} × 𝐴)) |
| 25 | xpsnen2g 8987 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴) | |
| 26 | 6, 15, 25 | sylancr 587 | . 2 ⊢ (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ 𝐴) |
| 27 | entr 8931 | . 2 ⊢ (((𝐴 ⊔ 1o) ≈ ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≈ 𝐴) → (𝐴 ⊔ 1o) ≈ 𝐴) | |
| 28 | 24, 26, 27 | syl2anc 584 | 1 ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∖ cdif 3900 ∪ cun 3901 ∩ cin 3902 ∅c0 4284 {csn 4577 〈cop 4583 class class class wbr 5092 × cxp 5617 Oncon0 6307 ωcom 7799 1oc1o 8381 ≈ cen 8869 ≼ cdom 8870 ⊔ cdju 9794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-om 7800 df-1st 7924 df-2nd 7925 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-dju 9797 |
| This theorem is referenced by: pwdjuidm 10086 isfin4p1 10209 canthp1lem2 10547 |
| Copyright terms: Public domain | W3C validator |