MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdju1 Structured version   Visualization version   GIF version

Theorem infdju1 10084
Description: An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
infdju1 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)

Proof of Theorem infdju1
StepHypRef Expression
1 difun2 4432 . . . . 5 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) = (({∅} × 𝐴) ∖ ({1o} × 1o))
2 df-dju 9797 . . . . . 6 (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o))
3 df1o2 8395 . . . . . . . 8 1o = {∅}
43xpeq2i 5646 . . . . . . 7 ({1o} × 1o) = ({1o} × {∅})
5 1oex 8398 . . . . . . . 8 1o ∈ V
6 0ex 5246 . . . . . . . 8 ∅ ∈ V
75, 6xpsn 7075 . . . . . . 7 ({1o} × {∅}) = {⟨1o, ∅⟩}
84, 7eqtr2i 2753 . . . . . 6 {⟨1o, ∅⟩} = ({1o} × 1o)
92, 8difeq12i 4075 . . . . 5 ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o))
10 xp01disjl 8410 . . . . . 6 (({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅
11 disj3 4405 . . . . . 6 ((({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ ↔ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o)))
1210, 11mpbi 230 . . . . 5 ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o))
131, 9, 123eqtr4i 2762 . . . 4 ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ({∅} × 𝐴)
14 reldom 8878 . . . . . . . 8 Rel ≼
1514brrelex2i 5676 . . . . . . 7 (ω ≼ 𝐴𝐴 ∈ V)
16 1on 8400 . . . . . . 7 1o ∈ On
17 djudoml 10079 . . . . . . 7 ((𝐴 ∈ V ∧ 1o ∈ On) → 𝐴 ≼ (𝐴 ⊔ 1o))
1815, 16, 17sylancl 586 . . . . . 6 (ω ≼ 𝐴𝐴 ≼ (𝐴 ⊔ 1o))
19 domtr 8932 . . . . . 6 ((ω ≼ 𝐴𝐴 ≼ (𝐴 ⊔ 1o)) → ω ≼ (𝐴 ⊔ 1o))
2018, 19mpdan 687 . . . . 5 (ω ≼ 𝐴 → ω ≼ (𝐴 ⊔ 1o))
21 infdifsn 9553 . . . . 5 (ω ≼ (𝐴 ⊔ 1o) → ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ (𝐴 ⊔ 1o))
2220, 21syl 17 . . . 4 (ω ≼ 𝐴 → ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ (𝐴 ⊔ 1o))
2313, 22eqbrtrrid 5128 . . 3 (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o))
2423ensymd 8930 . 2 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ ({∅} × 𝐴))
25 xpsnen2g 8987 . . 3 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
266, 15, 25sylancr 587 . 2 (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ 𝐴)
27 entr 8931 . 2 (((𝐴 ⊔ 1o) ≈ ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≈ 𝐴) → (𝐴 ⊔ 1o) ≈ 𝐴)
2824, 26, 27syl2anc 584 1 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  cdif 3900  cun 3901  cin 3902  c0 4284  {csn 4577  cop 4583   class class class wbr 5092   × cxp 5617  Oncon0 6307  ωcom 7799  1oc1o 8381  cen 8869  cdom 8870  cdju 9794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1st 7924  df-2nd 7925  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-dju 9797
This theorem is referenced by:  pwdjuidm  10086  isfin4p1  10209  canthp1lem2  10547
  Copyright terms: Public domain W3C validator