![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infdju1 | Structured version Visualization version GIF version |
Description: An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
infdju1 | ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difun2 4487 | . . . . 5 ⊢ ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) = (({∅} × 𝐴) ∖ ({1o} × 1o)) | |
2 | df-dju 9939 | . . . . . 6 ⊢ (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o)) | |
3 | df1o2 8512 | . . . . . . . 8 ⊢ 1o = {∅} | |
4 | 3 | xpeq2i 5716 | . . . . . . 7 ⊢ ({1o} × 1o) = ({1o} × {∅}) |
5 | 1oex 8515 | . . . . . . . 8 ⊢ 1o ∈ V | |
6 | 0ex 5313 | . . . . . . . 8 ⊢ ∅ ∈ V | |
7 | 5, 6 | xpsn 7161 | . . . . . . 7 ⊢ ({1o} × {∅}) = {〈1o, ∅〉} |
8 | 4, 7 | eqtr2i 2764 | . . . . . 6 ⊢ {〈1o, ∅〉} = ({1o} × 1o) |
9 | 2, 8 | difeq12i 4134 | . . . . 5 ⊢ ((𝐴 ⊔ 1o) ∖ {〈1o, ∅〉}) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) |
10 | xp01disjl 8529 | . . . . . 6 ⊢ (({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ | |
11 | disj3 4460 | . . . . . 6 ⊢ ((({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ ↔ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o))) | |
12 | 10, 11 | mpbi 230 | . . . . 5 ⊢ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o)) |
13 | 1, 9, 12 | 3eqtr4i 2773 | . . . 4 ⊢ ((𝐴 ⊔ 1o) ∖ {〈1o, ∅〉}) = ({∅} × 𝐴) |
14 | reldom 8990 | . . . . . . . 8 ⊢ Rel ≼ | |
15 | 14 | brrelex2i 5746 | . . . . . . 7 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
16 | 1on 8517 | . . . . . . 7 ⊢ 1o ∈ On | |
17 | djudoml 10223 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 1o ∈ On) → 𝐴 ≼ (𝐴 ⊔ 1o)) | |
18 | 15, 16, 17 | sylancl 586 | . . . . . 6 ⊢ (ω ≼ 𝐴 → 𝐴 ≼ (𝐴 ⊔ 1o)) |
19 | domtr 9046 | . . . . . 6 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ≼ (𝐴 ⊔ 1o)) → ω ≼ (𝐴 ⊔ 1o)) | |
20 | 18, 19 | mpdan 687 | . . . . 5 ⊢ (ω ≼ 𝐴 → ω ≼ (𝐴 ⊔ 1o)) |
21 | infdifsn 9695 | . . . . 5 ⊢ (ω ≼ (𝐴 ⊔ 1o) → ((𝐴 ⊔ 1o) ∖ {〈1o, ∅〉}) ≈ (𝐴 ⊔ 1o)) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (ω ≼ 𝐴 → ((𝐴 ⊔ 1o) ∖ {〈1o, ∅〉}) ≈ (𝐴 ⊔ 1o)) |
23 | 13, 22 | eqbrtrrid 5184 | . . 3 ⊢ (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o)) |
24 | 23 | ensymd 9044 | . 2 ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ ({∅} × 𝐴)) |
25 | xpsnen2g 9104 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴) | |
26 | 6, 15, 25 | sylancr 587 | . 2 ⊢ (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ 𝐴) |
27 | entr 9045 | . 2 ⊢ (((𝐴 ⊔ 1o) ≈ ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≈ 𝐴) → (𝐴 ⊔ 1o) ≈ 𝐴) | |
28 | 24, 26, 27 | syl2anc 584 | 1 ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∖ cdif 3960 ∪ cun 3961 ∩ cin 3962 ∅c0 4339 {csn 4631 〈cop 4637 class class class wbr 5148 × cxp 5687 Oncon0 6386 ωcom 7887 1oc1o 8498 ≈ cen 8981 ≼ cdom 8982 ⊔ cdju 9936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-om 7888 df-1st 8013 df-2nd 8014 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-dju 9939 |
This theorem is referenced by: pwdjuidm 10230 isfin4p1 10353 canthp1lem2 10691 |
Copyright terms: Public domain | W3C validator |