Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwfi2f1o Structured version   Visualization version   GIF version

Theorem pwfi2f1o 41184
Description: The pw2f1o 8942 bijection relates finitely supported indicator functions on a two-element set to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.)
Hypotheses
Ref Expression
pwfi2f1o.s 𝑆 = {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅}
pwfi2f1o.f 𝐹 = (𝑥𝑆 ↦ (𝑥 “ {1o}))
Assertion
Ref Expression
pwfi2f1o (𝐴𝑉𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑆   𝑥,𝑉,𝑦
Allowed substitution hints:   𝑆(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem pwfi2f1o
StepHypRef Expression
1 eqid 2736 . . . . 5 (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
21pw2f1o2 41123 . . . 4 (𝐴𝑉 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1-onto→𝒫 𝐴)
3 f1of1 6766 . . . 4 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1-onto→𝒫 𝐴 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1→𝒫 𝐴)
42, 3syl 17 . . 3 (𝐴𝑉 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1→𝒫 𝐴)
5 pwfi2f1o.s . . . 4 𝑆 = {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅}
6 ssrab2 4025 . . . 4 {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅} ⊆ (2om 𝐴)
75, 6eqsstri 3966 . . 3 𝑆 ⊆ (2om 𝐴)
8 f1ores 6781 . . 3 (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1→𝒫 𝐴𝑆 ⊆ (2om 𝐴)) → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆))
94, 7, 8sylancl 586 . 2 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆))
10 elmapfun 8725 . . . . . . . . . . . . 13 (𝑦 ∈ (2om 𝐴) → Fun 𝑦)
11 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ (2om 𝐴) → 𝑦 ∈ (2om 𝐴))
12 0ex 5251 . . . . . . . . . . . . . 14 ∅ ∈ V
1312a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ (2om 𝐴) → ∅ ∈ V)
1410, 11, 133jca 1127 . . . . . . . . . . . 12 (𝑦 ∈ (2om 𝐴) → (Fun 𝑦𝑦 ∈ (2om 𝐴) ∧ ∅ ∈ V))
1514adantl 482 . . . . . . . . . . 11 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (Fun 𝑦𝑦 ∈ (2om 𝐴) ∧ ∅ ∈ V))
16 funisfsupp 9231 . . . . . . . . . . 11 ((Fun 𝑦𝑦 ∈ (2om 𝐴) ∧ ∅ ∈ V) → (𝑦 finSupp ∅ ↔ (𝑦 supp ∅) ∈ Fin))
1715, 16syl 17 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 finSupp ∅ ↔ (𝑦 supp ∅) ∈ Fin))
1813anim2i 617 . . . . . . . . . . . . 13 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝐴𝑉 ∧ ∅ ∈ V))
19 elmapi 8708 . . . . . . . . . . . . . 14 (𝑦 ∈ (2om 𝐴) → 𝑦:𝐴⟶2o)
2019adantl 482 . . . . . . . . . . . . 13 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → 𝑦:𝐴⟶2o)
21 fsuppeq 8061 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ ∅ ∈ V) → (𝑦:𝐴⟶2o → (𝑦 supp ∅) = (𝑦 “ (2o ∖ {∅}))))
2218, 20, 21sylc 65 . . . . . . . . . . . 12 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 supp ∅) = (𝑦 “ (2o ∖ {∅})))
23 df-2o 8368 . . . . . . . . . . . . . . . 16 2o = suc 1o
24 df-suc 6308 . . . . . . . . . . . . . . . . 17 suc 1o = (1o ∪ {1o})
2524equncomi 4102 . . . . . . . . . . . . . . . 16 suc 1o = ({1o} ∪ 1o)
2623, 25eqtri 2764 . . . . . . . . . . . . . . 15 2o = ({1o} ∪ 1o)
27 df1o2 8374 . . . . . . . . . . . . . . . 16 1o = {∅}
2827eqcomi 2745 . . . . . . . . . . . . . . 15 {∅} = 1o
2926, 28difeq12i 4067 . . . . . . . . . . . . . 14 (2o ∖ {∅}) = (({1o} ∪ 1o) ∖ 1o)
30 difun2 4427 . . . . . . . . . . . . . . 15 (({1o} ∪ 1o) ∖ 1o) = ({1o} ∖ 1o)
31 incom 4148 . . . . . . . . . . . . . . . . 17 ({1o} ∩ 1o) = (1o ∩ {1o})
32 1on 8379 . . . . . . . . . . . . . . . . . . 19 1o ∈ On
3332onordi 6411 . . . . . . . . . . . . . . . . . 18 Ord 1o
34 orddisj 6340 . . . . . . . . . . . . . . . . . 18 (Ord 1o → (1o ∩ {1o}) = ∅)
3533, 34ax-mp 5 . . . . . . . . . . . . . . . . 17 (1o ∩ {1o}) = ∅
3631, 35eqtri 2764 . . . . . . . . . . . . . . . 16 ({1o} ∩ 1o) = ∅
37 disj3 4400 . . . . . . . . . . . . . . . 16 (({1o} ∩ 1o) = ∅ ↔ {1o} = ({1o} ∖ 1o))
3836, 37mpbi 229 . . . . . . . . . . . . . . 15 {1o} = ({1o} ∖ 1o)
3930, 38eqtr4i 2767 . . . . . . . . . . . . . 14 (({1o} ∪ 1o) ∖ 1o) = {1o}
4029, 39eqtri 2764 . . . . . . . . . . . . 13 (2o ∖ {∅}) = {1o}
4140imaeq2i 5997 . . . . . . . . . . . 12 (𝑦 “ (2o ∖ {∅})) = (𝑦 “ {1o})
4222, 41eqtrdi 2792 . . . . . . . . . . 11 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 supp ∅) = (𝑦 “ {1o}))
4342eleq1d 2821 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → ((𝑦 supp ∅) ∈ Fin ↔ (𝑦 “ {1o}) ∈ Fin))
44 cnvimass 6019 . . . . . . . . . . . 12 (𝑦 “ {1o}) ⊆ dom 𝑦
4544, 20fssdm 6671 . . . . . . . . . . 11 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 “ {1o}) ⊆ 𝐴)
4645biantrurd 533 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → ((𝑦 “ {1o}) ∈ Fin ↔ ((𝑦 “ {1o}) ⊆ 𝐴 ∧ (𝑦 “ {1o}) ∈ Fin)))
4717, 43, 463bitrd 304 . . . . . . . . 9 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 finSupp ∅ ↔ ((𝑦 “ {1o}) ⊆ 𝐴 ∧ (𝑦 “ {1o}) ∈ Fin)))
48 elfpw 9219 . . . . . . . . 9 ((𝑦 “ {1o}) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑦 “ {1o}) ⊆ 𝐴 ∧ (𝑦 “ {1o}) ∈ Fin))
4947, 48bitr4di 288 . . . . . . . 8 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 finSupp ∅ ↔ (𝑦 “ {1o}) ∈ (𝒫 𝐴 ∩ Fin)))
5049rabbidva 3410 . . . . . . 7 (𝐴𝑉 → {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅} = {𝑦 ∈ (2om 𝐴) ∣ (𝑦 “ {1o}) ∈ (𝒫 𝐴 ∩ Fin)})
51 cnveq 5815 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
5251imaeq1d 5998 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 “ {1o}) = (𝑦 “ {1o}))
5352cbvmptv 5205 . . . . . . . 8 (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) = (𝑦 ∈ (2om 𝐴) ↦ (𝑦 “ {1o}))
5453mptpreima 6176 . . . . . . 7 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin)) = {𝑦 ∈ (2om 𝐴) ∣ (𝑦 “ {1o}) ∈ (𝒫 𝐴 ∩ Fin)}
5550, 5, 543eqtr4g 2801 . . . . . 6 (𝐴𝑉𝑆 = ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin)))
5655imaeq2d 5999 . . . . 5 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) = ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin))))
57 f1ofo 6774 . . . . . . 7 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1-onto→𝒫 𝐴 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–onto→𝒫 𝐴)
582, 57syl 17 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–onto→𝒫 𝐴)
59 inss1 4175 . . . . . 6 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
60 foimacnv 6784 . . . . . 6 (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–onto→𝒫 𝐴 ∧ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴) → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin))) = (𝒫 𝐴 ∩ Fin))
6158, 59, 60sylancl 586 . . . . 5 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin))) = (𝒫 𝐴 ∩ Fin))
6256, 61eqtrd 2776 . . . 4 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) = (𝒫 𝐴 ∩ Fin))
63 f1oeq3 6757 . . . 4 (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) = (𝒫 𝐴 ∩ Fin) → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) ↔ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
6462, 63syl 17 . . 3 (𝐴𝑉 → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) ↔ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
65 resmpt 5977 . . . . . 6 (𝑆 ⊆ (2om 𝐴) → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆) = (𝑥𝑆 ↦ (𝑥 “ {1o})))
667, 65ax-mp 5 . . . . 5 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆) = (𝑥𝑆 ↦ (𝑥 “ {1o}))
67 pwfi2f1o.f . . . . 5 𝐹 = (𝑥𝑆 ↦ (𝑥 “ {1o}))
6866, 67eqtr4i 2767 . . . 4 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆) = 𝐹
69 f1oeq1 6755 . . . 4 (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆) = 𝐹 → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin) ↔ 𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
7068, 69mp1i 13 . . 3 (𝐴𝑉 → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin) ↔ 𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
7164, 70bitrd 278 . 2 (𝐴𝑉 → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) ↔ 𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
729, 71mpbid 231 1 (𝐴𝑉𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  {crab 3403  Vcvv 3441  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4269  𝒫 cpw 4547  {csn 4573   class class class wbr 5092  cmpt 5175  ccnv 5619  cres 5622  cima 5623  Ord word 6301  suc csuc 6304  Fun wfun 6473  wf 6475  1-1wf1 6476  ontowfo 6477  1-1-ontowf1o 6478  (class class class)co 7337   supp csupp 8047  1oc1o 8360  2oc2o 8361  m cmap 8686  Fincfn 8804   finSupp cfsupp 9226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-ord 6305  df-on 6306  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-1st 7899  df-2nd 7900  df-supp 8048  df-1o 8367  df-2o 8368  df-map 8688  df-fsupp 9227
This theorem is referenced by:  pwfi2en  41185
  Copyright terms: Public domain W3C validator