Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwfi2f1o Structured version   Visualization version   GIF version

Theorem pwfi2f1o 40837
Description: The pw2f1o 8817 bijection relates finitely supported indicator functions on a two-element set to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.)
Hypotheses
Ref Expression
pwfi2f1o.s 𝑆 = {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅}
pwfi2f1o.f 𝐹 = (𝑥𝑆 ↦ (𝑥 “ {1o}))
Assertion
Ref Expression
pwfi2f1o (𝐴𝑉𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑆   𝑥,𝑉,𝑦
Allowed substitution hints:   𝑆(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem pwfi2f1o
StepHypRef Expression
1 eqid 2738 . . . . 5 (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
21pw2f1o2 40776 . . . 4 (𝐴𝑉 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1-onto→𝒫 𝐴)
3 f1of1 6699 . . . 4 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1-onto→𝒫 𝐴 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1→𝒫 𝐴)
42, 3syl 17 . . 3 (𝐴𝑉 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1→𝒫 𝐴)
5 pwfi2f1o.s . . . 4 𝑆 = {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅}
6 ssrab2 4009 . . . 4 {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅} ⊆ (2om 𝐴)
75, 6eqsstri 3951 . . 3 𝑆 ⊆ (2om 𝐴)
8 f1ores 6714 . . 3 (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1→𝒫 𝐴𝑆 ⊆ (2om 𝐴)) → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆))
94, 7, 8sylancl 585 . 2 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆))
10 elmapfun 8612 . . . . . . . . . . . . 13 (𝑦 ∈ (2om 𝐴) → Fun 𝑦)
11 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ (2om 𝐴) → 𝑦 ∈ (2om 𝐴))
12 0ex 5226 . . . . . . . . . . . . . 14 ∅ ∈ V
1312a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ (2om 𝐴) → ∅ ∈ V)
1410, 11, 133jca 1126 . . . . . . . . . . . 12 (𝑦 ∈ (2om 𝐴) → (Fun 𝑦𝑦 ∈ (2om 𝐴) ∧ ∅ ∈ V))
1514adantl 481 . . . . . . . . . . 11 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (Fun 𝑦𝑦 ∈ (2om 𝐴) ∧ ∅ ∈ V))
16 funisfsupp 9063 . . . . . . . . . . 11 ((Fun 𝑦𝑦 ∈ (2om 𝐴) ∧ ∅ ∈ V) → (𝑦 finSupp ∅ ↔ (𝑦 supp ∅) ∈ Fin))
1715, 16syl 17 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 finSupp ∅ ↔ (𝑦 supp ∅) ∈ Fin))
1813anim2i 616 . . . . . . . . . . . . 13 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝐴𝑉 ∧ ∅ ∈ V))
19 elmapi 8595 . . . . . . . . . . . . . 14 (𝑦 ∈ (2om 𝐴) → 𝑦:𝐴⟶2o)
2019adantl 481 . . . . . . . . . . . . 13 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → 𝑦:𝐴⟶2o)
21 frnsuppeq 7962 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ ∅ ∈ V) → (𝑦:𝐴⟶2o → (𝑦 supp ∅) = (𝑦 “ (2o ∖ {∅}))))
2218, 20, 21sylc 65 . . . . . . . . . . . 12 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 supp ∅) = (𝑦 “ (2o ∖ {∅})))
23 df-2o 8268 . . . . . . . . . . . . . . . 16 2o = suc 1o
24 df-suc 6257 . . . . . . . . . . . . . . . . 17 suc 1o = (1o ∪ {1o})
2524equncomi 4085 . . . . . . . . . . . . . . . 16 suc 1o = ({1o} ∪ 1o)
2623, 25eqtri 2766 . . . . . . . . . . . . . . 15 2o = ({1o} ∪ 1o)
27 df1o2 8279 . . . . . . . . . . . . . . . 16 1o = {∅}
2827eqcomi 2747 . . . . . . . . . . . . . . 15 {∅} = 1o
2926, 28difeq12i 4051 . . . . . . . . . . . . . 14 (2o ∖ {∅}) = (({1o} ∪ 1o) ∖ 1o)
30 difun2 4411 . . . . . . . . . . . . . . 15 (({1o} ∪ 1o) ∖ 1o) = ({1o} ∖ 1o)
31 incom 4131 . . . . . . . . . . . . . . . . 17 ({1o} ∩ 1o) = (1o ∩ {1o})
32 1on 8274 . . . . . . . . . . . . . . . . . . 19 1o ∈ On
3332onordi 6356 . . . . . . . . . . . . . . . . . 18 Ord 1o
34 orddisj 6289 . . . . . . . . . . . . . . . . . 18 (Ord 1o → (1o ∩ {1o}) = ∅)
3533, 34ax-mp 5 . . . . . . . . . . . . . . . . 17 (1o ∩ {1o}) = ∅
3631, 35eqtri 2766 . . . . . . . . . . . . . . . 16 ({1o} ∩ 1o) = ∅
37 disj3 4384 . . . . . . . . . . . . . . . 16 (({1o} ∩ 1o) = ∅ ↔ {1o} = ({1o} ∖ 1o))
3836, 37mpbi 229 . . . . . . . . . . . . . . 15 {1o} = ({1o} ∖ 1o)
3930, 38eqtr4i 2769 . . . . . . . . . . . . . 14 (({1o} ∪ 1o) ∖ 1o) = {1o}
4029, 39eqtri 2766 . . . . . . . . . . . . 13 (2o ∖ {∅}) = {1o}
4140imaeq2i 5956 . . . . . . . . . . . 12 (𝑦 “ (2o ∖ {∅})) = (𝑦 “ {1o})
4222, 41eqtrdi 2795 . . . . . . . . . . 11 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 supp ∅) = (𝑦 “ {1o}))
4342eleq1d 2823 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → ((𝑦 supp ∅) ∈ Fin ↔ (𝑦 “ {1o}) ∈ Fin))
44 cnvimass 5978 . . . . . . . . . . . 12 (𝑦 “ {1o}) ⊆ dom 𝑦
4544, 20fssdm 6604 . . . . . . . . . . 11 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 “ {1o}) ⊆ 𝐴)
4645biantrurd 532 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → ((𝑦 “ {1o}) ∈ Fin ↔ ((𝑦 “ {1o}) ⊆ 𝐴 ∧ (𝑦 “ {1o}) ∈ Fin)))
4717, 43, 463bitrd 304 . . . . . . . . 9 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 finSupp ∅ ↔ ((𝑦 “ {1o}) ⊆ 𝐴 ∧ (𝑦 “ {1o}) ∈ Fin)))
48 elfpw 9051 . . . . . . . . 9 ((𝑦 “ {1o}) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑦 “ {1o}) ⊆ 𝐴 ∧ (𝑦 “ {1o}) ∈ Fin))
4947, 48bitr4di 288 . . . . . . . 8 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 finSupp ∅ ↔ (𝑦 “ {1o}) ∈ (𝒫 𝐴 ∩ Fin)))
5049rabbidva 3402 . . . . . . 7 (𝐴𝑉 → {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅} = {𝑦 ∈ (2om 𝐴) ∣ (𝑦 “ {1o}) ∈ (𝒫 𝐴 ∩ Fin)})
51 cnveq 5771 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
5251imaeq1d 5957 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 “ {1o}) = (𝑦 “ {1o}))
5352cbvmptv 5183 . . . . . . . 8 (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) = (𝑦 ∈ (2om 𝐴) ↦ (𝑦 “ {1o}))
5453mptpreima 6130 . . . . . . 7 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin)) = {𝑦 ∈ (2om 𝐴) ∣ (𝑦 “ {1o}) ∈ (𝒫 𝐴 ∩ Fin)}
5550, 5, 543eqtr4g 2804 . . . . . 6 (𝐴𝑉𝑆 = ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin)))
5655imaeq2d 5958 . . . . 5 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) = ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin))))
57 f1ofo 6707 . . . . . . 7 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1-onto→𝒫 𝐴 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–onto→𝒫 𝐴)
582, 57syl 17 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–onto→𝒫 𝐴)
59 inss1 4159 . . . . . 6 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
60 foimacnv 6717 . . . . . 6 (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–onto→𝒫 𝐴 ∧ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴) → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin))) = (𝒫 𝐴 ∩ Fin))
6158, 59, 60sylancl 585 . . . . 5 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin))) = (𝒫 𝐴 ∩ Fin))
6256, 61eqtrd 2778 . . . 4 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) = (𝒫 𝐴 ∩ Fin))
63 f1oeq3 6690 . . . 4 (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) = (𝒫 𝐴 ∩ Fin) → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) ↔ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
6462, 63syl 17 . . 3 (𝐴𝑉 → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) ↔ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
65 resmpt 5934 . . . . . 6 (𝑆 ⊆ (2om 𝐴) → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆) = (𝑥𝑆 ↦ (𝑥 “ {1o})))
667, 65ax-mp 5 . . . . 5 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆) = (𝑥𝑆 ↦ (𝑥 “ {1o}))
67 pwfi2f1o.f . . . . 5 𝐹 = (𝑥𝑆 ↦ (𝑥 “ {1o}))
6866, 67eqtr4i 2769 . . . 4 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆) = 𝐹
69 f1oeq1 6688 . . . 4 (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆) = 𝐹 → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin) ↔ 𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
7068, 69mp1i 13 . . 3 (𝐴𝑉 → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin) ↔ 𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
7164, 70bitrd 278 . 2 (𝐴𝑉 → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) ↔ 𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
729, 71mpbid 231 1 (𝐴𝑉𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  cmpt 5153  ccnv 5579  cres 5582  cima 5583  Ord word 6250  suc csuc 6253  Fun wfun 6412  wf 6414  1-1wf1 6415  ontowfo 6416  1-1-ontowf1o 6417  (class class class)co 7255   supp csupp 7948  1oc1o 8260  2oc2o 8261  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-supp 7949  df-1o 8267  df-2o 8268  df-map 8575  df-fsupp 9059
This theorem is referenced by:  pwfi2en  40838
  Copyright terms: Public domain W3C validator