Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwfi2f1o Structured version   Visualization version   GIF version

Theorem pwfi2f1o 43085
Description: The pw2f1o 9046 bijection relates finitely supported indicator functions on a two-element set to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.)
Hypotheses
Ref Expression
pwfi2f1o.s 𝑆 = {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅}
pwfi2f1o.f 𝐹 = (𝑥𝑆 ↦ (𝑥 “ {1o}))
Assertion
Ref Expression
pwfi2f1o (𝐴𝑉𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑆   𝑥,𝑉,𝑦
Allowed substitution hints:   𝑆(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem pwfi2f1o
StepHypRef Expression
1 eqid 2729 . . . . 5 (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
21pw2f1o2 43027 . . . 4 (𝐴𝑉 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1-onto→𝒫 𝐴)
3 f1of1 6799 . . . 4 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1-onto→𝒫 𝐴 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1→𝒫 𝐴)
42, 3syl 17 . . 3 (𝐴𝑉 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1→𝒫 𝐴)
5 pwfi2f1o.s . . . 4 𝑆 = {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅}
6 ssrab2 4043 . . . 4 {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅} ⊆ (2om 𝐴)
75, 6eqsstri 3993 . . 3 𝑆 ⊆ (2om 𝐴)
8 f1ores 6814 . . 3 (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1→𝒫 𝐴𝑆 ⊆ (2om 𝐴)) → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆))
94, 7, 8sylancl 586 . 2 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆))
10 elmapfun 8839 . . . . . . . . . . . . 13 (𝑦 ∈ (2om 𝐴) → Fun 𝑦)
11 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ (2om 𝐴) → 𝑦 ∈ (2om 𝐴))
12 0ex 5262 . . . . . . . . . . . . . 14 ∅ ∈ V
1312a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ (2om 𝐴) → ∅ ∈ V)
1410, 11, 133jca 1128 . . . . . . . . . . . 12 (𝑦 ∈ (2om 𝐴) → (Fun 𝑦𝑦 ∈ (2om 𝐴) ∧ ∅ ∈ V))
1514adantl 481 . . . . . . . . . . 11 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (Fun 𝑦𝑦 ∈ (2om 𝐴) ∧ ∅ ∈ V))
16 funisfsupp 9318 . . . . . . . . . . 11 ((Fun 𝑦𝑦 ∈ (2om 𝐴) ∧ ∅ ∈ V) → (𝑦 finSupp ∅ ↔ (𝑦 supp ∅) ∈ Fin))
1715, 16syl 17 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 finSupp ∅ ↔ (𝑦 supp ∅) ∈ Fin))
1813anim2i 617 . . . . . . . . . . . . 13 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝐴𝑉 ∧ ∅ ∈ V))
19 elmapi 8822 . . . . . . . . . . . . . 14 (𝑦 ∈ (2om 𝐴) → 𝑦:𝐴⟶2o)
2019adantl 481 . . . . . . . . . . . . 13 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → 𝑦:𝐴⟶2o)
21 fsuppeq 8154 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ ∅ ∈ V) → (𝑦:𝐴⟶2o → (𝑦 supp ∅) = (𝑦 “ (2o ∖ {∅}))))
2218, 20, 21sylc 65 . . . . . . . . . . . 12 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 supp ∅) = (𝑦 “ (2o ∖ {∅})))
23 df-2o 8435 . . . . . . . . . . . . . . . 16 2o = suc 1o
24 df-suc 6338 . . . . . . . . . . . . . . . . 17 suc 1o = (1o ∪ {1o})
2524equncomi 4123 . . . . . . . . . . . . . . . 16 suc 1o = ({1o} ∪ 1o)
2623, 25eqtri 2752 . . . . . . . . . . . . . . 15 2o = ({1o} ∪ 1o)
27 df1o2 8441 . . . . . . . . . . . . . . . 16 1o = {∅}
2827eqcomi 2738 . . . . . . . . . . . . . . 15 {∅} = 1o
2926, 28difeq12i 4087 . . . . . . . . . . . . . 14 (2o ∖ {∅}) = (({1o} ∪ 1o) ∖ 1o)
30 difun2 4444 . . . . . . . . . . . . . . 15 (({1o} ∪ 1o) ∖ 1o) = ({1o} ∖ 1o)
31 incom 4172 . . . . . . . . . . . . . . . . 17 ({1o} ∩ 1o) = (1o ∩ {1o})
32 1on 8446 . . . . . . . . . . . . . . . . . . 19 1o ∈ On
3332onordi 6445 . . . . . . . . . . . . . . . . . 18 Ord 1o
34 orddisj 6370 . . . . . . . . . . . . . . . . . 18 (Ord 1o → (1o ∩ {1o}) = ∅)
3533, 34ax-mp 5 . . . . . . . . . . . . . . . . 17 (1o ∩ {1o}) = ∅
3631, 35eqtri 2752 . . . . . . . . . . . . . . . 16 ({1o} ∩ 1o) = ∅
37 disj3 4417 . . . . . . . . . . . . . . . 16 (({1o} ∩ 1o) = ∅ ↔ {1o} = ({1o} ∖ 1o))
3836, 37mpbi 230 . . . . . . . . . . . . . . 15 {1o} = ({1o} ∖ 1o)
3930, 38eqtr4i 2755 . . . . . . . . . . . . . 14 (({1o} ∪ 1o) ∖ 1o) = {1o}
4029, 39eqtri 2752 . . . . . . . . . . . . 13 (2o ∖ {∅}) = {1o}
4140imaeq2i 6029 . . . . . . . . . . . 12 (𝑦 “ (2o ∖ {∅})) = (𝑦 “ {1o})
4222, 41eqtrdi 2780 . . . . . . . . . . 11 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 supp ∅) = (𝑦 “ {1o}))
4342eleq1d 2813 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → ((𝑦 supp ∅) ∈ Fin ↔ (𝑦 “ {1o}) ∈ Fin))
44 cnvimass 6053 . . . . . . . . . . . 12 (𝑦 “ {1o}) ⊆ dom 𝑦
4544, 20fssdm 6707 . . . . . . . . . . 11 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 “ {1o}) ⊆ 𝐴)
4645biantrurd 532 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → ((𝑦 “ {1o}) ∈ Fin ↔ ((𝑦 “ {1o}) ⊆ 𝐴 ∧ (𝑦 “ {1o}) ∈ Fin)))
4717, 43, 463bitrd 305 . . . . . . . . 9 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 finSupp ∅ ↔ ((𝑦 “ {1o}) ⊆ 𝐴 ∧ (𝑦 “ {1o}) ∈ Fin)))
48 elfpw 9305 . . . . . . . . 9 ((𝑦 “ {1o}) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑦 “ {1o}) ⊆ 𝐴 ∧ (𝑦 “ {1o}) ∈ Fin))
4947, 48bitr4di 289 . . . . . . . 8 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 finSupp ∅ ↔ (𝑦 “ {1o}) ∈ (𝒫 𝐴 ∩ Fin)))
5049rabbidva 3412 . . . . . . 7 (𝐴𝑉 → {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅} = {𝑦 ∈ (2om 𝐴) ∣ (𝑦 “ {1o}) ∈ (𝒫 𝐴 ∩ Fin)})
51 cnveq 5837 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
5251imaeq1d 6030 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 “ {1o}) = (𝑦 “ {1o}))
5352cbvmptv 5211 . . . . . . . 8 (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) = (𝑦 ∈ (2om 𝐴) ↦ (𝑦 “ {1o}))
5453mptpreima 6211 . . . . . . 7 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin)) = {𝑦 ∈ (2om 𝐴) ∣ (𝑦 “ {1o}) ∈ (𝒫 𝐴 ∩ Fin)}
5550, 5, 543eqtr4g 2789 . . . . . 6 (𝐴𝑉𝑆 = ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin)))
5655imaeq2d 6031 . . . . 5 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) = ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin))))
57 f1ofo 6807 . . . . . . 7 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1-onto→𝒫 𝐴 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–onto→𝒫 𝐴)
582, 57syl 17 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–onto→𝒫 𝐴)
59 inss1 4200 . . . . . 6 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
60 foimacnv 6817 . . . . . 6 (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–onto→𝒫 𝐴 ∧ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴) → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin))) = (𝒫 𝐴 ∩ Fin))
6158, 59, 60sylancl 586 . . . . 5 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin))) = (𝒫 𝐴 ∩ Fin))
6256, 61eqtrd 2764 . . . 4 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) = (𝒫 𝐴 ∩ Fin))
63 f1oeq3 6790 . . . 4 (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) = (𝒫 𝐴 ∩ Fin) → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) ↔ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
6462, 63syl 17 . . 3 (𝐴𝑉 → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) ↔ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
65 resmpt 6008 . . . . . 6 (𝑆 ⊆ (2om 𝐴) → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆) = (𝑥𝑆 ↦ (𝑥 “ {1o})))
667, 65ax-mp 5 . . . . 5 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆) = (𝑥𝑆 ↦ (𝑥 “ {1o}))
67 pwfi2f1o.f . . . . 5 𝐹 = (𝑥𝑆 ↦ (𝑥 “ {1o}))
6866, 67eqtr4i 2755 . . . 4 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆) = 𝐹
69 f1oeq1 6788 . . . 4 (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆) = 𝐹 → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin) ↔ 𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
7068, 69mp1i 13 . . 3 (𝐴𝑉 → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin) ↔ 𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
7164, 70bitrd 279 . 2 (𝐴𝑉 → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) ↔ 𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
729, 71mpbid 232 1 (𝐴𝑉𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  cmpt 5188  ccnv 5637  cres 5640  cima 5641  Ord word 6331  suc csuc 6334  Fun wfun 6505  wf 6507  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510  (class class class)co 7387   supp csupp 8139  1oc1o 8427  2oc2o 8428  m cmap 8799  Fincfn 8918   finSupp cfsupp 9312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-supp 8140  df-1o 8434  df-2o 8435  df-map 8801  df-fsupp 9313
This theorem is referenced by:  pwfi2en  43086
  Copyright terms: Public domain W3C validator