Proof of Theorem pwfi2f1o
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ (2o
↑m 𝐴)
↦ (◡𝑥 “ {1o})) = (𝑥 ∈ (2o
↑m 𝐴)
↦ (◡𝑥 “ {1o})) |
2 | 1 | pw2f1o2 40860 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})):(2o
↑m 𝐴)–1-1-onto→𝒫 𝐴) |
3 | | f1of1 6715 |
. . . 4
⊢ ((𝑥 ∈ (2o
↑m 𝐴)
↦ (◡𝑥 “ {1o})):(2o
↑m 𝐴)–1-1-onto→𝒫 𝐴 → (𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})):(2o
↑m 𝐴)–1-1→𝒫 𝐴) |
4 | 2, 3 | syl 17 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})):(2o
↑m 𝐴)–1-1→𝒫 𝐴) |
5 | | pwfi2f1o.s |
. . . 4
⊢ 𝑆 = {𝑦 ∈ (2o ↑m
𝐴) ∣ 𝑦 finSupp
∅} |
6 | | ssrab2 4013 |
. . . 4
⊢ {𝑦 ∈ (2o
↑m 𝐴)
∣ 𝑦 finSupp ∅}
⊆ (2o ↑m 𝐴) |
7 | 5, 6 | eqsstri 3955 |
. . 3
⊢ 𝑆 ⊆ (2o
↑m 𝐴) |
8 | | f1ores 6730 |
. . 3
⊢ (((𝑥 ∈ (2o
↑m 𝐴)
↦ (◡𝑥 “ {1o})):(2o
↑m 𝐴)–1-1→𝒫 𝐴 ∧ 𝑆 ⊆ (2o ↑m
𝐴)) → ((𝑥 ∈ (2o
↑m 𝐴)
↦ (◡𝑥 “ {1o})) ↾ 𝑆):𝑆–1-1-onto→((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) “ 𝑆)) |
9 | 4, 7, 8 | sylancl 586 |
. 2
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) ↾ 𝑆):𝑆–1-1-onto→((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) “ 𝑆)) |
10 | | elmapfun 8654 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (2o
↑m 𝐴)
→ Fun 𝑦) |
11 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (2o
↑m 𝐴)
→ 𝑦 ∈
(2o ↑m 𝐴)) |
12 | | 0ex 5231 |
. . . . . . . . . . . . . 14
⊢ ∅
∈ V |
13 | 12 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (2o
↑m 𝐴)
→ ∅ ∈ V) |
14 | 10, 11, 13 | 3jca 1127 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (2o
↑m 𝐴)
→ (Fun 𝑦 ∧ 𝑦 ∈ (2o
↑m 𝐴) ∧
∅ ∈ V)) |
15 | 14 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2o ↑m
𝐴)) → (Fun 𝑦 ∧ 𝑦 ∈ (2o ↑m
𝐴) ∧ ∅ ∈
V)) |
16 | | funisfsupp 9133 |
. . . . . . . . . . 11
⊢ ((Fun
𝑦 ∧ 𝑦 ∈ (2o ↑m
𝐴) ∧ ∅ ∈ V)
→ (𝑦 finSupp ∅
↔ (𝑦 supp ∅)
∈ Fin)) |
17 | 15, 16 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2o ↑m
𝐴)) → (𝑦 finSupp ∅ ↔ (𝑦 supp ∅) ∈
Fin)) |
18 | 13 | anim2i 617 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2o ↑m
𝐴)) → (𝐴 ∈ 𝑉 ∧ ∅ ∈ V)) |
19 | | elmapi 8637 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (2o
↑m 𝐴)
→ 𝑦:𝐴⟶2o) |
20 | 19 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2o ↑m
𝐴)) → 𝑦:𝐴⟶2o) |
21 | | frnsuppeq 7991 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑦:𝐴⟶2o → (𝑦 supp ∅) = (◡𝑦 “ (2o ∖
{∅})))) |
22 | 18, 20, 21 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2o ↑m
𝐴)) → (𝑦 supp ∅) = (◡𝑦 “ (2o ∖
{∅}))) |
23 | | df-2o 8298 |
. . . . . . . . . . . . . . . 16
⊢
2o = suc 1o |
24 | | df-suc 6272 |
. . . . . . . . . . . . . . . . 17
⊢ suc
1o = (1o ∪ {1o}) |
25 | 24 | equncomi 4089 |
. . . . . . . . . . . . . . . 16
⊢ suc
1o = ({1o} ∪ 1o) |
26 | 23, 25 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢
2o = ({1o} ∪ 1o) |
27 | | df1o2 8304 |
. . . . . . . . . . . . . . . 16
⊢
1o = {∅} |
28 | 27 | eqcomi 2747 |
. . . . . . . . . . . . . . 15
⊢ {∅}
= 1o |
29 | 26, 28 | difeq12i 4055 |
. . . . . . . . . . . . . 14
⊢
(2o ∖ {∅}) = (({1o} ∪
1o) ∖ 1o) |
30 | | difun2 4414 |
. . . . . . . . . . . . . . 15
⊢
(({1o} ∪ 1o) ∖ 1o) =
({1o} ∖ 1o) |
31 | | incom 4135 |
. . . . . . . . . . . . . . . . 17
⊢
({1o} ∩ 1o) = (1o ∩
{1o}) |
32 | | 1on 8309 |
. . . . . . . . . . . . . . . . . . 19
⊢
1o ∈ On |
33 | 32 | onordi 6371 |
. . . . . . . . . . . . . . . . . 18
⊢ Ord
1o |
34 | | orddisj 6304 |
. . . . . . . . . . . . . . . . . 18
⊢ (Ord
1o → (1o ∩ {1o}) =
∅) |
35 | 33, 34 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(1o ∩ {1o}) = ∅ |
36 | 31, 35 | eqtri 2766 |
. . . . . . . . . . . . . . . 16
⊢
({1o} ∩ 1o) = ∅ |
37 | | disj3 4387 |
. . . . . . . . . . . . . . . 16
⊢
(({1o} ∩ 1o) = ∅ ↔ {1o}
= ({1o} ∖ 1o)) |
38 | 36, 37 | mpbi 229 |
. . . . . . . . . . . . . . 15
⊢
{1o} = ({1o} ∖
1o) |
39 | 30, 38 | eqtr4i 2769 |
. . . . . . . . . . . . . 14
⊢
(({1o} ∪ 1o) ∖ 1o) =
{1o} |
40 | 29, 39 | eqtri 2766 |
. . . . . . . . . . . . 13
⊢
(2o ∖ {∅}) = {1o} |
41 | 40 | imaeq2i 5967 |
. . . . . . . . . . . 12
⊢ (◡𝑦 “ (2o ∖ {∅})) =
(◡𝑦 “ {1o}) |
42 | 22, 41 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2o ↑m
𝐴)) → (𝑦 supp ∅) = (◡𝑦 “ {1o})) |
43 | 42 | eleq1d 2823 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2o ↑m
𝐴)) → ((𝑦 supp ∅) ∈ Fin ↔
(◡𝑦 “ {1o}) ∈
Fin)) |
44 | | cnvimass 5989 |
. . . . . . . . . . . 12
⊢ (◡𝑦 “ {1o}) ⊆ dom 𝑦 |
45 | 44, 20 | fssdm 6620 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2o ↑m
𝐴)) → (◡𝑦 “ {1o}) ⊆ 𝐴) |
46 | 45 | biantrurd 533 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2o ↑m
𝐴)) → ((◡𝑦 “ {1o}) ∈ Fin ↔
((◡𝑦 “ {1o}) ⊆ 𝐴 ∧ (◡𝑦 “ {1o}) ∈
Fin))) |
47 | 17, 43, 46 | 3bitrd 305 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2o ↑m
𝐴)) → (𝑦 finSupp ∅ ↔ ((◡𝑦 “ {1o}) ⊆ 𝐴 ∧ (◡𝑦 “ {1o}) ∈
Fin))) |
48 | | elfpw 9121 |
. . . . . . . . 9
⊢ ((◡𝑦 “ {1o}) ∈ (𝒫
𝐴 ∩ Fin) ↔ ((◡𝑦 “ {1o}) ⊆ 𝐴 ∧ (◡𝑦 “ {1o}) ∈
Fin)) |
49 | 47, 48 | bitr4di 289 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2o ↑m
𝐴)) → (𝑦 finSupp ∅ ↔ (◡𝑦 “ {1o}) ∈ (𝒫
𝐴 ∩
Fin))) |
50 | 49 | rabbidva 3413 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → {𝑦 ∈ (2o ↑m
𝐴) ∣ 𝑦 finSupp ∅} = {𝑦 ∈ (2o
↑m 𝐴)
∣ (◡𝑦 “ {1o}) ∈ (𝒫
𝐴 ∩
Fin)}) |
51 | | cnveq 5782 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ◡𝑥 = ◡𝑦) |
52 | 51 | imaeq1d 5968 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (◡𝑥 “ {1o}) = (◡𝑦 “ {1o})) |
53 | 52 | cbvmptv 5187 |
. . . . . . . 8
⊢ (𝑥 ∈ (2o
↑m 𝐴)
↦ (◡𝑥 “ {1o})) = (𝑦 ∈ (2o
↑m 𝐴)
↦ (◡𝑦 “ {1o})) |
54 | 53 | mptpreima 6141 |
. . . . . . 7
⊢ (◡(𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) “ (𝒫
𝐴 ∩ Fin)) = {𝑦 ∈ (2o
↑m 𝐴)
∣ (◡𝑦 “ {1o}) ∈ (𝒫
𝐴 ∩
Fin)} |
55 | 50, 5, 54 | 3eqtr4g 2803 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝑆 = (◡(𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) “ (𝒫
𝐴 ∩
Fin))) |
56 | 55 | imaeq2d 5969 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) “ 𝑆) = ((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) “ (◡(𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) “ (𝒫
𝐴 ∩
Fin)))) |
57 | | f1ofo 6723 |
. . . . . . 7
⊢ ((𝑥 ∈ (2o
↑m 𝐴)
↦ (◡𝑥 “ {1o})):(2o
↑m 𝐴)–1-1-onto→𝒫 𝐴 → (𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})):(2o
↑m 𝐴)–onto→𝒫 𝐴) |
58 | 2, 57 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})):(2o
↑m 𝐴)–onto→𝒫 𝐴) |
59 | | inss1 4162 |
. . . . . 6
⊢
(𝒫 𝐴 ∩
Fin) ⊆ 𝒫 𝐴 |
60 | | foimacnv 6733 |
. . . . . 6
⊢ (((𝑥 ∈ (2o
↑m 𝐴)
↦ (◡𝑥 “ {1o})):(2o
↑m 𝐴)–onto→𝒫 𝐴 ∧ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴) → ((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) “ (◡(𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) “ (𝒫
𝐴 ∩ Fin))) = (𝒫
𝐴 ∩
Fin)) |
61 | 58, 59, 60 | sylancl 586 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) “ (◡(𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) “ (𝒫
𝐴 ∩ Fin))) = (𝒫
𝐴 ∩
Fin)) |
62 | 56, 61 | eqtrd 2778 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) “ 𝑆) = (𝒫 𝐴 ∩ Fin)) |
63 | | f1oeq3 6706 |
. . . 4
⊢ (((𝑥 ∈ (2o
↑m 𝐴)
↦ (◡𝑥 “ {1o})) “ 𝑆) = (𝒫 𝐴 ∩ Fin) → (((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) ↾ 𝑆):𝑆–1-1-onto→((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) “ 𝑆) ↔ ((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) ↾ 𝑆):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin))) |
64 | 62, 63 | syl 17 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) ↾ 𝑆):𝑆–1-1-onto→((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) “ 𝑆) ↔ ((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) ↾ 𝑆):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin))) |
65 | | resmpt 5945 |
. . . . . 6
⊢ (𝑆 ⊆ (2o
↑m 𝐴)
→ ((𝑥 ∈
(2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) ↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o}))) |
66 | 7, 65 | ax-mp 5 |
. . . . 5
⊢ ((𝑥 ∈ (2o
↑m 𝐴)
↦ (◡𝑥 “ {1o})) ↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})) |
67 | | pwfi2f1o.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})) |
68 | 66, 67 | eqtr4i 2769 |
. . . 4
⊢ ((𝑥 ∈ (2o
↑m 𝐴)
↦ (◡𝑥 “ {1o})) ↾ 𝑆) = 𝐹 |
69 | | f1oeq1 6704 |
. . . 4
⊢ (((𝑥 ∈ (2o
↑m 𝐴)
↦ (◡𝑥 “ {1o})) ↾ 𝑆) = 𝐹 → (((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) ↾ 𝑆):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin) ↔ 𝐹:𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin))) |
70 | 68, 69 | mp1i 13 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) ↾ 𝑆):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin) ↔ 𝐹:𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin))) |
71 | 64, 70 | bitrd 278 |
. 2
⊢ (𝐴 ∈ 𝑉 → (((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) ↾ 𝑆):𝑆–1-1-onto→((𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) “ 𝑆) ↔ 𝐹:𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin))) |
72 | 9, 71 | mpbid 231 |
1
⊢ (𝐴 ∈ 𝑉 → 𝐹:𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin)) |