Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwfi2f1o Structured version   Visualization version   GIF version

Theorem pwfi2f1o 40035
 Description: The pw2f1o 8605 bijection relates finitely supported indicator functions on a two-element set to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.)
Hypotheses
Ref Expression
pwfi2f1o.s 𝑆 = {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅}
pwfi2f1o.f 𝐹 = (𝑥𝑆 ↦ (𝑥 “ {1o}))
Assertion
Ref Expression
pwfi2f1o (𝐴𝑉𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑆   𝑥,𝑉,𝑦
Allowed substitution hints:   𝑆(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem pwfi2f1o
StepHypRef Expression
1 eqid 2798 . . . . 5 (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
21pw2f1o2 39974 . . . 4 (𝐴𝑉 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1-onto→𝒫 𝐴)
3 f1of1 6589 . . . 4 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1-onto→𝒫 𝐴 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1→𝒫 𝐴)
42, 3syl 17 . . 3 (𝐴𝑉 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1→𝒫 𝐴)
5 pwfi2f1o.s . . . 4 𝑆 = {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅}
6 ssrab2 4007 . . . 4 {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅} ⊆ (2om 𝐴)
75, 6eqsstri 3949 . . 3 𝑆 ⊆ (2om 𝐴)
8 f1ores 6604 . . 3 (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1→𝒫 𝐴𝑆 ⊆ (2om 𝐴)) → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆))
94, 7, 8sylancl 589 . 2 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆))
10 elmapfun 8413 . . . . . . . . . . . . 13 (𝑦 ∈ (2om 𝐴) → Fun 𝑦)
11 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ (2om 𝐴) → 𝑦 ∈ (2om 𝐴))
12 0ex 5175 . . . . . . . . . . . . . 14 ∅ ∈ V
1312a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ (2om 𝐴) → ∅ ∈ V)
1410, 11, 133jca 1125 . . . . . . . . . . . 12 (𝑦 ∈ (2om 𝐴) → (Fun 𝑦𝑦 ∈ (2om 𝐴) ∧ ∅ ∈ V))
1514adantl 485 . . . . . . . . . . 11 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (Fun 𝑦𝑦 ∈ (2om 𝐴) ∧ ∅ ∈ V))
16 funisfsupp 8822 . . . . . . . . . . 11 ((Fun 𝑦𝑦 ∈ (2om 𝐴) ∧ ∅ ∈ V) → (𝑦 finSupp ∅ ↔ (𝑦 supp ∅) ∈ Fin))
1715, 16syl 17 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 finSupp ∅ ↔ (𝑦 supp ∅) ∈ Fin))
1813anim2i 619 . . . . . . . . . . . . 13 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝐴𝑉 ∧ ∅ ∈ V))
19 elmapi 8411 . . . . . . . . . . . . . 14 (𝑦 ∈ (2om 𝐴) → 𝑦:𝐴⟶2o)
2019adantl 485 . . . . . . . . . . . . 13 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → 𝑦:𝐴⟶2o)
21 frnsuppeq 7825 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ ∅ ∈ V) → (𝑦:𝐴⟶2o → (𝑦 supp ∅) = (𝑦 “ (2o ∖ {∅}))))
2218, 20, 21sylc 65 . . . . . . . . . . . 12 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 supp ∅) = (𝑦 “ (2o ∖ {∅})))
23 df-2o 8086 . . . . . . . . . . . . . . . 16 2o = suc 1o
24 df-suc 6165 . . . . . . . . . . . . . . . . 17 suc 1o = (1o ∪ {1o})
2524equncomi 4082 . . . . . . . . . . . . . . . 16 suc 1o = ({1o} ∪ 1o)
2623, 25eqtri 2821 . . . . . . . . . . . . . . 15 2o = ({1o} ∪ 1o)
27 df1o2 8099 . . . . . . . . . . . . . . . 16 1o = {∅}
2827eqcomi 2807 . . . . . . . . . . . . . . 15 {∅} = 1o
2926, 28difeq12i 4048 . . . . . . . . . . . . . 14 (2o ∖ {∅}) = (({1o} ∪ 1o) ∖ 1o)
30 difun2 4387 . . . . . . . . . . . . . . 15 (({1o} ∪ 1o) ∖ 1o) = ({1o} ∖ 1o)
31 incom 4128 . . . . . . . . . . . . . . . . 17 ({1o} ∩ 1o) = (1o ∩ {1o})
32 1on 8092 . . . . . . . . . . . . . . . . . . 19 1o ∈ On
3332onordi 6263 . . . . . . . . . . . . . . . . . 18 Ord 1o
34 orddisj 6197 . . . . . . . . . . . . . . . . . 18 (Ord 1o → (1o ∩ {1o}) = ∅)
3533, 34ax-mp 5 . . . . . . . . . . . . . . . . 17 (1o ∩ {1o}) = ∅
3631, 35eqtri 2821 . . . . . . . . . . . . . . . 16 ({1o} ∩ 1o) = ∅
37 disj3 4361 . . . . . . . . . . . . . . . 16 (({1o} ∩ 1o) = ∅ ↔ {1o} = ({1o} ∖ 1o))
3836, 37mpbi 233 . . . . . . . . . . . . . . 15 {1o} = ({1o} ∖ 1o)
3930, 38eqtr4i 2824 . . . . . . . . . . . . . 14 (({1o} ∪ 1o) ∖ 1o) = {1o}
4029, 39eqtri 2821 . . . . . . . . . . . . 13 (2o ∖ {∅}) = {1o}
4140imaeq2i 5894 . . . . . . . . . . . 12 (𝑦 “ (2o ∖ {∅})) = (𝑦 “ {1o})
4222, 41eqtrdi 2849 . . . . . . . . . . 11 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 supp ∅) = (𝑦 “ {1o}))
4342eleq1d 2874 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → ((𝑦 supp ∅) ∈ Fin ↔ (𝑦 “ {1o}) ∈ Fin))
44 cnvimass 5916 . . . . . . . . . . . 12 (𝑦 “ {1o}) ⊆ dom 𝑦
4544, 20fssdm 6504 . . . . . . . . . . 11 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 “ {1o}) ⊆ 𝐴)
4645biantrurd 536 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → ((𝑦 “ {1o}) ∈ Fin ↔ ((𝑦 “ {1o}) ⊆ 𝐴 ∧ (𝑦 “ {1o}) ∈ Fin)))
4717, 43, 463bitrd 308 . . . . . . . . 9 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 finSupp ∅ ↔ ((𝑦 “ {1o}) ⊆ 𝐴 ∧ (𝑦 “ {1o}) ∈ Fin)))
48 elfpw 8810 . . . . . . . . 9 ((𝑦 “ {1o}) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑦 “ {1o}) ⊆ 𝐴 ∧ (𝑦 “ {1o}) ∈ Fin))
4947, 48syl6bbr 292 . . . . . . . 8 ((𝐴𝑉𝑦 ∈ (2om 𝐴)) → (𝑦 finSupp ∅ ↔ (𝑦 “ {1o}) ∈ (𝒫 𝐴 ∩ Fin)))
5049rabbidva 3425 . . . . . . 7 (𝐴𝑉 → {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅} = {𝑦 ∈ (2om 𝐴) ∣ (𝑦 “ {1o}) ∈ (𝒫 𝐴 ∩ Fin)})
51 cnveq 5708 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
5251imaeq1d 5895 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 “ {1o}) = (𝑦 “ {1o}))
5352cbvmptv 5133 . . . . . . . 8 (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) = (𝑦 ∈ (2om 𝐴) ↦ (𝑦 “ {1o}))
5453mptpreima 6059 . . . . . . 7 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin)) = {𝑦 ∈ (2om 𝐴) ∣ (𝑦 “ {1o}) ∈ (𝒫 𝐴 ∩ Fin)}
5550, 5, 543eqtr4g 2858 . . . . . 6 (𝐴𝑉𝑆 = ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin)))
5655imaeq2d 5896 . . . . 5 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) = ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin))))
57 f1ofo 6597 . . . . . . 7 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–1-1-onto→𝒫 𝐴 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–onto→𝒫 𝐴)
582, 57syl 17 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–onto→𝒫 𝐴)
59 inss1 4155 . . . . . 6 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
60 foimacnv 6607 . . . . . 6 (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})):(2om 𝐴)–onto→𝒫 𝐴 ∧ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴) → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin))) = (𝒫 𝐴 ∩ Fin))
6158, 59, 60sylancl 589 . . . . 5 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ (𝒫 𝐴 ∩ Fin))) = (𝒫 𝐴 ∩ Fin))
6256, 61eqtrd 2833 . . . 4 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) = (𝒫 𝐴 ∩ Fin))
63 f1oeq3 6581 . . . 4 (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) = (𝒫 𝐴 ∩ Fin) → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) ↔ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
6462, 63syl 17 . . 3 (𝐴𝑉 → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) ↔ ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
65 resmpt 5872 . . . . . 6 (𝑆 ⊆ (2om 𝐴) → ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆) = (𝑥𝑆 ↦ (𝑥 “ {1o})))
667, 65ax-mp 5 . . . . 5 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆) = (𝑥𝑆 ↦ (𝑥 “ {1o}))
67 pwfi2f1o.f . . . . 5 𝐹 = (𝑥𝑆 ↦ (𝑥 “ {1o}))
6866, 67eqtr4i 2824 . . . 4 ((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆) = 𝐹
69 f1oeq1 6579 . . . 4 (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆) = 𝐹 → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin) ↔ 𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
7068, 69mp1i 13 . . 3 (𝐴𝑉 → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin) ↔ 𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
7164, 70bitrd 282 . 2 (𝐴𝑉 → (((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o})) “ 𝑆) ↔ 𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
729, 71mpbid 235 1 (𝐴𝑉𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  {crab 3110  Vcvv 3441   ∖ cdif 3878   ∪ cun 3879   ∩ cin 3880   ⊆ wss 3881  ∅c0 4243  𝒫 cpw 4497  {csn 4525   class class class wbr 5030   ↦ cmpt 5110  ◡ccnv 5518   ↾ cres 5521   “ cima 5522  Ord word 6158  suc csuc 6161  Fun wfun 6318  ⟶wf 6320  –1-1→wf1 6321  –onto→wfo 6322  –1-1-onto→wf1o 6323  (class class class)co 7135   supp csupp 7813  1oc1o 8078  2oc2o 8079   ↑m cmap 8389  Fincfn 8492   finSupp cfsupp 8817 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-supp 7814  df-1o 8085  df-2o 8086  df-map 8391  df-fsupp 8818 This theorem is referenced by:  pwfi2en  40036
 Copyright terms: Public domain W3C validator