Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrdivrng Structured version   Visualization version   GIF version

Theorem zrdivrng 36462
Description: The zero ring is not a division ring. (Contributed by FL, 24-Jan-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
zrdivrng.1 𝐴 ∈ V
Assertion
Ref Expression
zrdivrng ¬ ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps

Proof of Theorem zrdivrng
StepHypRef Expression
1 0ngrp 29502 . 2 ¬ ∅ ∈ GrpOp
2 opex 5425 . . . . . . . . . 10 𝐴, 𝐴⟩ ∈ V
32rnsnop 6180 . . . . . . . . 9 ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} = {𝐴}
4 zrdivrng.1 . . . . . . . . . . 11 𝐴 ∈ V
54gidsn 36461 . . . . . . . . . 10 (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) = 𝐴
65sneqi 4601 . . . . . . . . 9 {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})} = {𝐴}
73, 6difeq12i 4084 . . . . . . . 8 (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) = ({𝐴} ∖ {𝐴})
8 difid 4334 . . . . . . . 8 ({𝐴} ∖ {𝐴}) = ∅
97, 8eqtri 2761 . . . . . . 7 (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) = ∅
109xpeq2i 5664 . . . . . 6 ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})})) = ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × ∅)
11 xp0 6114 . . . . . 6 ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × ∅) = ∅
1210, 11eqtri 2761 . . . . 5 ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})})) = ∅
1312reseq2i 5938 . . . 4 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) = ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ∅)
14 res0 5945 . . . 4 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ∅) = ∅
1513, 14eqtri 2761 . . 3 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) = ∅
16 snex 5392 . . . . 5 {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ V
17 isdivrngo 36459 . . . . 5 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ V → (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps ↔ (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ RingOps ∧ ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) ∈ GrpOp)))
1816, 17ax-mp 5 . . . 4 (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps ↔ (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ RingOps ∧ ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) ∈ GrpOp))
1918simprbi 498 . . 3 (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps → ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) ∈ GrpOp)
2015, 19eqeltrrid 2839 . 2 (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps → ∅ ∈ GrpOp)
211, 20mto 196 1 ¬ ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 397  wcel 2107  Vcvv 3447  cdif 3911  c0 4286  {csn 4590  cop 4596   × cxp 5635  ran crn 5638  cres 5639  cfv 6500  GrpOpcgr 29480  GIdcgi 29481  RingOpscrngo 36403  DivRingOpscdrng 36457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-1st 7925  df-2nd 7926  df-grpo 29484  df-gid 29485  df-rngo 36404  df-drngo 36458
This theorem is referenced by:  dvrunz  36463
  Copyright terms: Public domain W3C validator