Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrdivrng Structured version   Visualization version   GIF version

Theorem zrdivrng 37947
Description: The zero ring is not a division ring. (Contributed by FL, 24-Jan-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
zrdivrng.1 𝐴 ∈ V
Assertion
Ref Expression
zrdivrng ¬ ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps

Proof of Theorem zrdivrng
StepHypRef Expression
1 0ngrp 30440 . 2 ¬ ∅ ∈ GrpOp
2 opex 5424 . . . . . . . . . 10 𝐴, 𝐴⟩ ∈ V
32rnsnop 6197 . . . . . . . . 9 ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} = {𝐴}
4 zrdivrng.1 . . . . . . . . . . 11 𝐴 ∈ V
54gidsn 37946 . . . . . . . . . 10 (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) = 𝐴
65sneqi 4600 . . . . . . . . 9 {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})} = {𝐴}
73, 6difeq12i 4087 . . . . . . . 8 (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) = ({𝐴} ∖ {𝐴})
8 difid 4339 . . . . . . . 8 ({𝐴} ∖ {𝐴}) = ∅
97, 8eqtri 2752 . . . . . . 7 (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) = ∅
109xpeq2i 5665 . . . . . 6 ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})})) = ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × ∅)
11 xp0 6131 . . . . . 6 ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × ∅) = ∅
1210, 11eqtri 2752 . . . . 5 ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})})) = ∅
1312reseq2i 5947 . . . 4 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) = ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ∅)
14 res0 5954 . . . 4 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ∅) = ∅
1513, 14eqtri 2752 . . 3 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) = ∅
16 snex 5391 . . . . 5 {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ V
17 isdivrngo 37944 . . . . 5 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ V → (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps ↔ (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ RingOps ∧ ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) ∈ GrpOp)))
1816, 17ax-mp 5 . . . 4 (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps ↔ (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ RingOps ∧ ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) ∈ GrpOp))
1918simprbi 496 . . 3 (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps → ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) ∈ GrpOp)
2015, 19eqeltrrid 2833 . 2 (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps → ∅ ∈ GrpOp)
211, 20mto 197 1 ¬ ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wcel 2109  Vcvv 3447  cdif 3911  c0 4296  {csn 4589  cop 4595   × cxp 5636  ran crn 5639  cres 5640  cfv 6511  GrpOpcgr 30418  GIdcgi 30419  RingOpscrngo 37888  DivRingOpscdrng 37942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-1st 7968  df-2nd 7969  df-grpo 30422  df-gid 30423  df-rngo 37889  df-drngo 37943
This theorem is referenced by:  dvrunz  37948
  Copyright terms: Public domain W3C validator