Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrdivrng Structured version   Visualization version   GIF version

Theorem zrdivrng 37960
Description: The zero ring is not a division ring. (Contributed by FL, 24-Jan-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
zrdivrng.1 𝐴 ∈ V
Assertion
Ref Expression
zrdivrng ¬ ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps

Proof of Theorem zrdivrng
StepHypRef Expression
1 0ngrp 30530 . 2 ¬ ∅ ∈ GrpOp
2 opex 5469 . . . . . . . . . 10 𝐴, 𝐴⟩ ∈ V
32rnsnop 6244 . . . . . . . . 9 ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} = {𝐴}
4 zrdivrng.1 . . . . . . . . . . 11 𝐴 ∈ V
54gidsn 37959 . . . . . . . . . 10 (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) = 𝐴
65sneqi 4637 . . . . . . . . 9 {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})} = {𝐴}
73, 6difeq12i 4124 . . . . . . . 8 (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) = ({𝐴} ∖ {𝐴})
8 difid 4376 . . . . . . . 8 ({𝐴} ∖ {𝐴}) = ∅
97, 8eqtri 2765 . . . . . . 7 (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) = ∅
109xpeq2i 5712 . . . . . 6 ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})})) = ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × ∅)
11 xp0 6178 . . . . . 6 ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × ∅) = ∅
1210, 11eqtri 2765 . . . . 5 ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})})) = ∅
1312reseq2i 5994 . . . 4 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) = ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ∅)
14 res0 6001 . . . 4 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ∅) = ∅
1513, 14eqtri 2765 . . 3 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) = ∅
16 snex 5436 . . . . 5 {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ V
17 isdivrngo 37957 . . . . 5 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ V → (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps ↔ (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ RingOps ∧ ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) ∈ GrpOp)))
1816, 17ax-mp 5 . . . 4 (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps ↔ (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ RingOps ∧ ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) ∈ GrpOp))
1918simprbi 496 . . 3 (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps → ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) ∈ GrpOp)
2015, 19eqeltrrid 2846 . 2 (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps → ∅ ∈ GrpOp)
211, 20mto 197 1 ¬ ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wcel 2108  Vcvv 3480  cdif 3948  c0 4333  {csn 4626  cop 4632   × cxp 5683  ran crn 5686  cres 5687  cfv 6561  GrpOpcgr 30508  GIdcgi 30509  RingOpscrngo 37901  DivRingOpscdrng 37955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-1st 8014  df-2nd 8015  df-grpo 30512  df-gid 30513  df-rngo 37902  df-drngo 37956
This theorem is referenced by:  dvrunz  37961
  Copyright terms: Public domain W3C validator