Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrdivrng Structured version   Visualization version   GIF version

Theorem zrdivrng 36111
Description: The zero ring is not a division ring. (Contributed by FL, 24-Jan-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
zrdivrng.1 𝐴 ∈ V
Assertion
Ref Expression
zrdivrng ¬ ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps

Proof of Theorem zrdivrng
StepHypRef Expression
1 0ngrp 28873 . 2 ¬ ∅ ∈ GrpOp
2 opex 5379 . . . . . . . . . 10 𝐴, 𝐴⟩ ∈ V
32rnsnop 6127 . . . . . . . . 9 ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} = {𝐴}
4 zrdivrng.1 . . . . . . . . . . 11 𝐴 ∈ V
54gidsn 36110 . . . . . . . . . 10 (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) = 𝐴
65sneqi 4572 . . . . . . . . 9 {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})} = {𝐴}
73, 6difeq12i 4055 . . . . . . . 8 (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) = ({𝐴} ∖ {𝐴})
8 difid 4304 . . . . . . . 8 ({𝐴} ∖ {𝐴}) = ∅
97, 8eqtri 2766 . . . . . . 7 (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) = ∅
109xpeq2i 5616 . . . . . 6 ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})})) = ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × ∅)
11 xp0 6061 . . . . . 6 ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × ∅) = ∅
1210, 11eqtri 2766 . . . . 5 ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})})) = ∅
1312reseq2i 5888 . . . 4 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) = ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ∅)
14 res0 5895 . . . 4 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ∅) = ∅
1513, 14eqtri 2766 . . 3 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) = ∅
16 snex 5354 . . . . 5 {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ V
17 isdivrngo 36108 . . . . 5 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ V → (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps ↔ (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ RingOps ∧ ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) ∈ GrpOp)))
1816, 17ax-mp 5 . . . 4 (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps ↔ (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ RingOps ∧ ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) ∈ GrpOp))
1918simprbi 497 . . 3 (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps → ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) ∈ GrpOp)
2015, 19eqeltrrid 2844 . 2 (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps → ∅ ∈ GrpOp)
211, 20mto 196 1 ¬ ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wcel 2106  Vcvv 3432  cdif 3884  c0 4256  {csn 4561  cop 4567   × cxp 5587  ran crn 5590  cres 5591  cfv 6433  GrpOpcgr 28851  GIdcgi 28852  RingOpscrngo 36052  DivRingOpscdrng 36106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-1st 7831  df-2nd 7832  df-grpo 28855  df-gid 28856  df-rngo 36053  df-drngo 36107
This theorem is referenced by:  dvrunz  36112
  Copyright terms: Public domain W3C validator