Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrdivrng Structured version   Visualization version   GIF version

Theorem zrdivrng 36907
Description: The zero ring is not a division ring. (Contributed by FL, 24-Jan-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
zrdivrng.1 𝐴 ∈ V
Assertion
Ref Expression
zrdivrng ¬ ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps

Proof of Theorem zrdivrng
StepHypRef Expression
1 0ngrp 29802 . 2 ¬ ∅ ∈ GrpOp
2 opex 5464 . . . . . . . . . 10 𝐴, 𝐴⟩ ∈ V
32rnsnop 6223 . . . . . . . . 9 ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} = {𝐴}
4 zrdivrng.1 . . . . . . . . . . 11 𝐴 ∈ V
54gidsn 36906 . . . . . . . . . 10 (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) = 𝐴
65sneqi 4639 . . . . . . . . 9 {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})} = {𝐴}
73, 6difeq12i 4120 . . . . . . . 8 (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) = ({𝐴} ∖ {𝐴})
8 difid 4370 . . . . . . . 8 ({𝐴} ∖ {𝐴}) = ∅
97, 8eqtri 2760 . . . . . . 7 (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) = ∅
109xpeq2i 5703 . . . . . 6 ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})})) = ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × ∅)
11 xp0 6157 . . . . . 6 ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × ∅) = ∅
1210, 11eqtri 2760 . . . . 5 ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})})) = ∅
1312reseq2i 5978 . . . 4 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) = ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ∅)
14 res0 5985 . . . 4 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ∅) = ∅
1513, 14eqtri 2760 . . 3 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) = ∅
16 snex 5431 . . . . 5 {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ V
17 isdivrngo 36904 . . . . 5 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ V → (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps ↔ (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ RingOps ∧ ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) ∈ GrpOp)))
1816, 17ax-mp 5 . . . 4 (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps ↔ (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ RingOps ∧ ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) ∈ GrpOp))
1918simprbi 497 . . 3 (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps → ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↾ ((ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}) × (ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∖ {(GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})}))) ∈ GrpOp)
2015, 19eqeltrrid 2838 . 2 (⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps → ∅ ∈ GrpOp)
211, 20mto 196 1 ¬ ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ∈ DivRingOps
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wcel 2106  Vcvv 3474  cdif 3945  c0 4322  {csn 4628  cop 4634   × cxp 5674  ran crn 5677  cres 5678  cfv 6543  GrpOpcgr 29780  GIdcgi 29781  RingOpscrngo 36848  DivRingOpscdrng 36902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-1st 7977  df-2nd 7978  df-grpo 29784  df-gid 29785  df-rngo 36849  df-drngo 36903
This theorem is referenced by:  dvrunz  36908
  Copyright terms: Public domain W3C validator