MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin1-3 Structured version   Visualization version   GIF version

Theorem isfin1-3 10142
Description: A set is I-finite iff every system of subsets contains a maximal subset. Definition I of [Levy58] p. 2. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin1-3 (𝐴𝑉 → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))

Proof of Theorem isfin1-3
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 porpss 7580 . . . 4 [] Po 𝒫 𝐴
2 cnvpo 6190 . . . 4 ( [] Po 𝒫 𝐴 [] Po 𝒫 𝐴)
31, 2mpbi 229 . . 3 [] Po 𝒫 𝐴
4 pwfi 8961 . . . 4 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
54biimpi 215 . . 3 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin)
6 frfi 9059 . . 3 (( [] Po 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ Fin) → [] Fr 𝒫 𝐴)
73, 5, 6sylancr 587 . 2 (𝐴 ∈ Fin → [] Fr 𝒫 𝐴)
8 inss2 4163 . . . . . 6 (Fin ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
9 pwexg 5301 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
10 ssexg 5247 . . . . . 6 (((Fin ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → (Fin ∩ 𝒫 𝐴) ∈ V)
118, 9, 10sylancr 587 . . . . 5 (𝐴𝑉 → (Fin ∩ 𝒫 𝐴) ∈ V)
12 0fin 8954 . . . . . . . 8 ∅ ∈ Fin
13 0elpw 5278 . . . . . . . 8 ∅ ∈ 𝒫 𝐴
1412, 13elini 4127 . . . . . . 7 ∅ ∈ (Fin ∩ 𝒫 𝐴)
1514ne0ii 4271 . . . . . 6 (Fin ∩ 𝒫 𝐴) ≠ ∅
16 fri 5549 . . . . . 6 ((((Fin ∩ 𝒫 𝐴) ∈ V ∧ [] Fr 𝒫 𝐴) ∧ ((Fin ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 ∧ (Fin ∩ 𝒫 𝐴) ≠ ∅)) → ∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏)
178, 15, 16mpanr12 702 . . . . 5 (((Fin ∩ 𝒫 𝐴) ∈ V ∧ [] Fr 𝒫 𝐴) → ∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏)
1811, 17sylan 580 . . . 4 ((𝐴𝑉 [] Fr 𝒫 𝐴) → ∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏)
1918ex 413 . . 3 (𝐴𝑉 → ( [] Fr 𝒫 𝐴 → ∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏))
20 elinel1 4129 . . . . 5 (𝑏 ∈ (Fin ∩ 𝒫 𝐴) → 𝑏 ∈ Fin)
21 ralnex 3167 . . . . . . . 8 (∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏 ↔ ¬ ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏)
2220adantr 481 . . . . . . . . . . . . 13 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → 𝑏 ∈ Fin)
23 snfi 8834 . . . . . . . . . . . . 13 {𝑑} ∈ Fin
24 unfi 8955 . . . . . . . . . . . . 13 ((𝑏 ∈ Fin ∧ {𝑑} ∈ Fin) → (𝑏 ∪ {𝑑}) ∈ Fin)
2522, 23, 24sylancl 586 . . . . . . . . . . . 12 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) ∈ Fin)
26 elinel2 4130 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (Fin ∩ 𝒫 𝐴) → 𝑏 ∈ 𝒫 𝐴)
2726elpwid 4544 . . . . . . . . . . . . . . 15 (𝑏 ∈ (Fin ∩ 𝒫 𝐴) → 𝑏𝐴)
2827adantr 481 . . . . . . . . . . . . . 14 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → 𝑏𝐴)
29 snssi 4741 . . . . . . . . . . . . . . 15 (𝑑𝐴 → {𝑑} ⊆ 𝐴)
3029ad2antrl 725 . . . . . . . . . . . . . 14 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → {𝑑} ⊆ 𝐴)
3128, 30unssd 4120 . . . . . . . . . . . . 13 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) ⊆ 𝐴)
32 vex 3436 . . . . . . . . . . . . . . 15 𝑏 ∈ V
33 snex 5354 . . . . . . . . . . . . . . 15 {𝑑} ∈ V
3432, 33unex 7596 . . . . . . . . . . . . . 14 (𝑏 ∪ {𝑑}) ∈ V
3534elpw 4537 . . . . . . . . . . . . 13 ((𝑏 ∪ {𝑑}) ∈ 𝒫 𝐴 ↔ (𝑏 ∪ {𝑑}) ⊆ 𝐴)
3631, 35sylibr 233 . . . . . . . . . . . 12 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) ∈ 𝒫 𝐴)
3725, 36elind 4128 . . . . . . . . . . 11 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) ∈ (Fin ∩ 𝒫 𝐴))
38 disjsn 4647 . . . . . . . . . . . . . . 15 ((𝑏 ∩ {𝑑}) = ∅ ↔ ¬ 𝑑𝑏)
3938biimpri 227 . . . . . . . . . . . . . 14 𝑑𝑏 → (𝑏 ∩ {𝑑}) = ∅)
40 vex 3436 . . . . . . . . . . . . . . 15 𝑑 ∈ V
4140snnz 4712 . . . . . . . . . . . . . 14 {𝑑} ≠ ∅
42 disjpss 4394 . . . . . . . . . . . . . 14 (((𝑏 ∩ {𝑑}) = ∅ ∧ {𝑑} ≠ ∅) → 𝑏 ⊊ (𝑏 ∪ {𝑑}))
4339, 41, 42sylancl 586 . . . . . . . . . . . . 13 𝑑𝑏𝑏 ⊊ (𝑏 ∪ {𝑑}))
4443ad2antll 726 . . . . . . . . . . . 12 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → 𝑏 ⊊ (𝑏 ∪ {𝑑}))
4534, 32brcnv 5791 . . . . . . . . . . . . 13 ((𝑏 ∪ {𝑑}) [] 𝑏𝑏 [] (𝑏 ∪ {𝑑}))
4634brrpss 7579 . . . . . . . . . . . . 13 (𝑏 [] (𝑏 ∪ {𝑑}) ↔ 𝑏 ⊊ (𝑏 ∪ {𝑑}))
4745, 46bitri 274 . . . . . . . . . . . 12 ((𝑏 ∪ {𝑑}) [] 𝑏𝑏 ⊊ (𝑏 ∪ {𝑑}))
4844, 47sylibr 233 . . . . . . . . . . 11 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) [] 𝑏)
49 breq1 5077 . . . . . . . . . . . 12 (𝑐 = (𝑏 ∪ {𝑑}) → (𝑐 [] 𝑏 ↔ (𝑏 ∪ {𝑑}) [] 𝑏))
5049rspcev 3561 . . . . . . . . . . 11 (((𝑏 ∪ {𝑑}) ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑏 ∪ {𝑑}) [] 𝑏) → ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏)
5137, 48, 50syl2anc 584 . . . . . . . . . 10 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏)
5251expr 457 . . . . . . . . 9 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ 𝑑𝐴) → (¬ 𝑑𝑏 → ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏))
5352con1d 145 . . . . . . . 8 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ 𝑑𝐴) → (¬ ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏𝑑𝑏))
5421, 53syl5bi 241 . . . . . . 7 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ 𝑑𝐴) → (∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏𝑑𝑏))
5554impancom 452 . . . . . 6 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ ∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏) → (𝑑𝐴𝑑𝑏))
5655ssrdv 3927 . . . . 5 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ ∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏) → 𝐴𝑏)
57 ssfi 8956 . . . . 5 ((𝑏 ∈ Fin ∧ 𝐴𝑏) → 𝐴 ∈ Fin)
5820, 56, 57syl2an2r 682 . . . 4 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ ∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏) → 𝐴 ∈ Fin)
5958rexlimiva 3210 . . 3 (∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏𝐴 ∈ Fin)
6019, 59syl6 35 . 2 (𝐴𝑉 → ( [] Fr 𝒫 𝐴𝐴 ∈ Fin))
617, 60impbid2 225 1 (𝐴𝑉 → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cun 3885  cin 3886  wss 3887  wpss 3888  c0 4256  𝒫 cpw 4533  {csn 4561   class class class wbr 5074   Po wpo 5501   Fr wfr 5541  ccnv 5588   [] crpss 7575  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-rpss 7576  df-om 7713  df-1o 8297  df-en 8734  df-fin 8737
This theorem is referenced by:  isfin1-4  10143  fin12  10169
  Copyright terms: Public domain W3C validator