MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin1-3 Structured version   Visualization version   GIF version

Theorem isfin1-3 10315
Description: A set is I-finite iff every system of subsets contains a maximal subset. Definition I of [Levy58] p. 2. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin1-3 (𝐴𝑉 → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))

Proof of Theorem isfin1-3
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 porpss 7683 . . . 4 [] Po 𝒫 𝐴
2 cnvpo 6248 . . . 4 ( [] Po 𝒫 𝐴 [] Po 𝒫 𝐴)
31, 2mpbi 230 . . 3 [] Po 𝒫 𝐴
4 pwfi 9244 . . . 4 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
54biimpi 216 . . 3 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin)
6 frfi 9208 . . 3 (( [] Po 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ Fin) → [] Fr 𝒫 𝐴)
73, 5, 6sylancr 587 . 2 (𝐴 ∈ Fin → [] Fr 𝒫 𝐴)
8 inss2 4197 . . . . . 6 (Fin ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
9 pwexg 5328 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
10 ssexg 5273 . . . . . 6 (((Fin ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → (Fin ∩ 𝒫 𝐴) ∈ V)
118, 9, 10sylancr 587 . . . . 5 (𝐴𝑉 → (Fin ∩ 𝒫 𝐴) ∈ V)
12 0fi 8990 . . . . . . . 8 ∅ ∈ Fin
13 0elpw 5306 . . . . . . . 8 ∅ ∈ 𝒫 𝐴
1412, 13elini 4158 . . . . . . 7 ∅ ∈ (Fin ∩ 𝒫 𝐴)
1514ne0ii 4303 . . . . . 6 (Fin ∩ 𝒫 𝐴) ≠ ∅
16 fri 5589 . . . . . 6 ((((Fin ∩ 𝒫 𝐴) ∈ V ∧ [] Fr 𝒫 𝐴) ∧ ((Fin ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 ∧ (Fin ∩ 𝒫 𝐴) ≠ ∅)) → ∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏)
178, 15, 16mpanr12 705 . . . . 5 (((Fin ∩ 𝒫 𝐴) ∈ V ∧ [] Fr 𝒫 𝐴) → ∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏)
1811, 17sylan 580 . . . 4 ((𝐴𝑉 [] Fr 𝒫 𝐴) → ∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏)
1918ex 412 . . 3 (𝐴𝑉 → ( [] Fr 𝒫 𝐴 → ∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏))
20 elinel1 4160 . . . . 5 (𝑏 ∈ (Fin ∩ 𝒫 𝐴) → 𝑏 ∈ Fin)
21 ralnex 3055 . . . . . . . 8 (∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏 ↔ ¬ ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏)
2220adantr 480 . . . . . . . . . . . . 13 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → 𝑏 ∈ Fin)
23 snfi 8991 . . . . . . . . . . . . 13 {𝑑} ∈ Fin
24 unfi 9112 . . . . . . . . . . . . 13 ((𝑏 ∈ Fin ∧ {𝑑} ∈ Fin) → (𝑏 ∪ {𝑑}) ∈ Fin)
2522, 23, 24sylancl 586 . . . . . . . . . . . 12 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) ∈ Fin)
26 elinel2 4161 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (Fin ∩ 𝒫 𝐴) → 𝑏 ∈ 𝒫 𝐴)
2726elpwid 4568 . . . . . . . . . . . . . . 15 (𝑏 ∈ (Fin ∩ 𝒫 𝐴) → 𝑏𝐴)
2827adantr 480 . . . . . . . . . . . . . 14 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → 𝑏𝐴)
29 snssi 4768 . . . . . . . . . . . . . . 15 (𝑑𝐴 → {𝑑} ⊆ 𝐴)
3029ad2antrl 728 . . . . . . . . . . . . . 14 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → {𝑑} ⊆ 𝐴)
3128, 30unssd 4151 . . . . . . . . . . . . 13 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) ⊆ 𝐴)
32 vex 3448 . . . . . . . . . . . . . . 15 𝑏 ∈ V
33 vsnex 5384 . . . . . . . . . . . . . . 15 {𝑑} ∈ V
3432, 33unex 7700 . . . . . . . . . . . . . 14 (𝑏 ∪ {𝑑}) ∈ V
3534elpw 4563 . . . . . . . . . . . . 13 ((𝑏 ∪ {𝑑}) ∈ 𝒫 𝐴 ↔ (𝑏 ∪ {𝑑}) ⊆ 𝐴)
3631, 35sylibr 234 . . . . . . . . . . . 12 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) ∈ 𝒫 𝐴)
3725, 36elind 4159 . . . . . . . . . . 11 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) ∈ (Fin ∩ 𝒫 𝐴))
38 disjsn 4671 . . . . . . . . . . . . . . 15 ((𝑏 ∩ {𝑑}) = ∅ ↔ ¬ 𝑑𝑏)
3938biimpri 228 . . . . . . . . . . . . . 14 𝑑𝑏 → (𝑏 ∩ {𝑑}) = ∅)
40 vex 3448 . . . . . . . . . . . . . . 15 𝑑 ∈ V
4140snnz 4736 . . . . . . . . . . . . . 14 {𝑑} ≠ ∅
42 disjpss 4420 . . . . . . . . . . . . . 14 (((𝑏 ∩ {𝑑}) = ∅ ∧ {𝑑} ≠ ∅) → 𝑏 ⊊ (𝑏 ∪ {𝑑}))
4339, 41, 42sylancl 586 . . . . . . . . . . . . 13 𝑑𝑏𝑏 ⊊ (𝑏 ∪ {𝑑}))
4443ad2antll 729 . . . . . . . . . . . 12 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → 𝑏 ⊊ (𝑏 ∪ {𝑑}))
4534, 32brcnv 5836 . . . . . . . . . . . . 13 ((𝑏 ∪ {𝑑}) [] 𝑏𝑏 [] (𝑏 ∪ {𝑑}))
4634brrpss 7682 . . . . . . . . . . . . 13 (𝑏 [] (𝑏 ∪ {𝑑}) ↔ 𝑏 ⊊ (𝑏 ∪ {𝑑}))
4745, 46bitri 275 . . . . . . . . . . . 12 ((𝑏 ∪ {𝑑}) [] 𝑏𝑏 ⊊ (𝑏 ∪ {𝑑}))
4844, 47sylibr 234 . . . . . . . . . . 11 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) [] 𝑏)
49 breq1 5105 . . . . . . . . . . . 12 (𝑐 = (𝑏 ∪ {𝑑}) → (𝑐 [] 𝑏 ↔ (𝑏 ∪ {𝑑}) [] 𝑏))
5049rspcev 3585 . . . . . . . . . . 11 (((𝑏 ∪ {𝑑}) ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑏 ∪ {𝑑}) [] 𝑏) → ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏)
5137, 48, 50syl2anc 584 . . . . . . . . . 10 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏)
5251expr 456 . . . . . . . . 9 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ 𝑑𝐴) → (¬ 𝑑𝑏 → ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏))
5352con1d 145 . . . . . . . 8 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ 𝑑𝐴) → (¬ ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏𝑑𝑏))
5421, 53biimtrid 242 . . . . . . 7 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ 𝑑𝐴) → (∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏𝑑𝑏))
5554impancom 451 . . . . . 6 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ ∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏) → (𝑑𝐴𝑑𝑏))
5655ssrdv 3949 . . . . 5 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ ∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏) → 𝐴𝑏)
57 ssfi 9114 . . . . 5 ((𝑏 ∈ Fin ∧ 𝐴𝑏) → 𝐴 ∈ Fin)
5820, 56, 57syl2an2r 685 . . . 4 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ ∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏) → 𝐴 ∈ Fin)
5958rexlimiva 3126 . . 3 (∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏𝐴 ∈ Fin)
6019, 59syl6 35 . 2 (𝐴𝑉 → ( [] Fr 𝒫 𝐴𝐴 ∈ Fin))
617, 60impbid2 226 1 (𝐴𝑉 → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cun 3909  cin 3910  wss 3911  wpss 3912  c0 4292  𝒫 cpw 4559  {csn 4585   class class class wbr 5102   Po wpo 5537   Fr wfr 5581  ccnv 5630   [] crpss 7678  Fincfn 8895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-rpss 7679  df-om 7823  df-1o 8411  df-en 8896  df-dom 8897  df-fin 8899
This theorem is referenced by:  isfin1-4  10316  fin12  10342
  Copyright terms: Public domain W3C validator