Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpid11 | Structured version Visualization version GIF version |
Description: The Cartesian square is a one-to-one construction. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
xpid11 | ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5825 | . . 3 ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) → dom (𝐴 × 𝐴) = dom (𝐵 × 𝐵)) | |
2 | dmxpid 5851 | . . 3 ⊢ dom (𝐴 × 𝐴) = 𝐴 | |
3 | dmxpid 5851 | . . 3 ⊢ dom (𝐵 × 𝐵) = 𝐵 | |
4 | 1, 2, 3 | 3eqtr3g 2799 | . 2 ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) → 𝐴 = 𝐵) |
5 | xpeq12 5625 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐵) → (𝐴 × 𝐴) = (𝐵 × 𝐵)) | |
6 | 5 | anidms 568 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
7 | 4, 6 | impbii 208 | 1 ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 × cxp 5598 dom cdm 5600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-dm 5610 |
This theorem is referenced by: intopsn 18387 grporn 28932 ismndo2 36080 rngosn3 36130 rngomndo 36141 |
Copyright terms: Public domain | W3C validator |