Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpid11 | Structured version Visualization version GIF version |
Description: The Cartesian square is a one-to-one construction. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
xpid11 | ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5809 | . . 3 ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) → dom (𝐴 × 𝐴) = dom (𝐵 × 𝐵)) | |
2 | dmxpid 5836 | . . 3 ⊢ dom (𝐴 × 𝐴) = 𝐴 | |
3 | dmxpid 5836 | . . 3 ⊢ dom (𝐵 × 𝐵) = 𝐵 | |
4 | 1, 2, 3 | 3eqtr3g 2802 | . 2 ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) → 𝐴 = 𝐵) |
5 | xpeq12 5613 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐵) → (𝐴 × 𝐴) = (𝐵 × 𝐵)) | |
6 | 5 | anidms 566 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
7 | 4, 6 | impbii 208 | 1 ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 × cxp 5586 dom cdm 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-dm 5598 |
This theorem is referenced by: intopsn 18319 grporn 28862 ismndo2 36011 rngosn3 36061 rngomndo 36072 |
Copyright terms: Public domain | W3C validator |