| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpid11 | Structured version Visualization version GIF version | ||
| Description: The Cartesian square is a one-to-one construction. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| xpid11 | ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq 5870 | . . 3 ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) → dom (𝐴 × 𝐴) = dom (𝐵 × 𝐵)) | |
| 2 | dmxpid 5897 | . . 3 ⊢ dom (𝐴 × 𝐴) = 𝐴 | |
| 3 | dmxpid 5897 | . . 3 ⊢ dom (𝐵 × 𝐵) = 𝐵 | |
| 4 | 1, 2, 3 | 3eqtr3g 2788 | . 2 ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) → 𝐴 = 𝐵) |
| 5 | xpeq12 5666 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐵) → (𝐴 × 𝐴) = (𝐵 × 𝐵)) | |
| 6 | 5 | anidms 566 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
| 7 | 4, 6 | impbii 209 | 1 ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 × cxp 5639 dom cdm 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-dm 5651 |
| This theorem is referenced by: intopsn 18588 grporn 30457 ismndo2 37875 rngosn3 37925 rngomndo 37936 |
| Copyright terms: Public domain | W3C validator |