| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpid11 | Structured version Visualization version GIF version | ||
| Description: The Cartesian square is a one-to-one construction. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| xpid11 | ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq 5849 | . . 3 ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) → dom (𝐴 × 𝐴) = dom (𝐵 × 𝐵)) | |
| 2 | dmxpid 5876 | . . 3 ⊢ dom (𝐴 × 𝐴) = 𝐴 | |
| 3 | dmxpid 5876 | . . 3 ⊢ dom (𝐵 × 𝐵) = 𝐵 | |
| 4 | 1, 2, 3 | 3eqtr3g 2791 | . 2 ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) → 𝐴 = 𝐵) |
| 5 | xpeq12 5646 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐵) → (𝐴 × 𝐴) = (𝐵 × 𝐵)) | |
| 6 | 5 | anidms 566 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
| 7 | 4, 6 | impbii 209 | 1 ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 × cxp 5619 dom cdm 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-dm 5631 |
| This theorem is referenced by: intopsn 18566 grporn 30505 ismndo2 37937 rngosn3 37987 rngomndo 37998 |
| Copyright terms: Public domain | W3C validator |