MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cnvcnv Structured version   Visualization version   GIF version

Theorem f1cnvcnv 6729
Description: Two ways to express that a set 𝐴 (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
f1cnvcnv (𝐴:dom 𝐴1-1→V ↔ (Fun 𝐴 ∧ Fun 𝐴))

Proof of Theorem f1cnvcnv
StepHypRef Expression
1 df-f1 6487 . 2 (𝐴:dom 𝐴1-1→V ↔ (𝐴:dom 𝐴⟶V ∧ Fun 𝐴))
2 dffn2 6654 . . . 4 (𝐴 Fn dom 𝐴𝐴:dom 𝐴⟶V)
3 dmcnvcnv 5875 . . . . 5 dom 𝐴 = dom 𝐴
4 df-fn 6485 . . . . 5 (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴))
53, 4mpbiran2 710 . . . 4 (𝐴 Fn dom 𝐴 ↔ Fun 𝐴)
62, 5bitr3i 277 . . 3 (𝐴:dom 𝐴⟶V ↔ Fun 𝐴)
7 relcnv 6055 . . . . 5 Rel 𝐴
8 dfrel2 6138 . . . . 5 (Rel 𝐴𝐴 = 𝐴)
97, 8mpbi 230 . . . 4 𝐴 = 𝐴
109funeqi 6503 . . 3 (Fun 𝐴 ↔ Fun 𝐴)
116, 10anbi12ci 629 . 2 ((𝐴:dom 𝐴⟶V ∧ Fun 𝐴) ↔ (Fun 𝐴 ∧ Fun 𝐴))
121, 11bitri 275 1 (𝐴:dom 𝐴1-1→V ↔ (Fun 𝐴 ∧ Fun 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  Vcvv 3436  ccnv 5618  dom cdm 5619  Rel wrel 5624  Fun wfun 6476   Fn wfn 6477  wf 6478  1-1wf1 6479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator