![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1cnvcnv | Structured version Visualization version GIF version |
Description: Two ways to express that a set 𝐴 (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
f1cnvcnv | ⊢ (◡◡𝐴:dom 𝐴–1-1→V ↔ (Fun ◡𝐴 ∧ Fun ◡◡𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 6549 | . 2 ⊢ (◡◡𝐴:dom 𝐴–1-1→V ↔ (◡◡𝐴:dom 𝐴⟶V ∧ Fun ◡◡◡𝐴)) | |
2 | dffn2 6720 | . . . 4 ⊢ (◡◡𝐴 Fn dom 𝐴 ↔ ◡◡𝐴:dom 𝐴⟶V) | |
3 | dmcnvcnv 5933 | . . . . 5 ⊢ dom ◡◡𝐴 = dom 𝐴 | |
4 | df-fn 6547 | . . . . 5 ⊢ (◡◡𝐴 Fn dom 𝐴 ↔ (Fun ◡◡𝐴 ∧ dom ◡◡𝐴 = dom 𝐴)) | |
5 | 3, 4 | mpbiran2 709 | . . . 4 ⊢ (◡◡𝐴 Fn dom 𝐴 ↔ Fun ◡◡𝐴) |
6 | 2, 5 | bitr3i 277 | . . 3 ⊢ (◡◡𝐴:dom 𝐴⟶V ↔ Fun ◡◡𝐴) |
7 | relcnv 6104 | . . . . 5 ⊢ Rel ◡𝐴 | |
8 | dfrel2 6189 | . . . . 5 ⊢ (Rel ◡𝐴 ↔ ◡◡◡𝐴 = ◡𝐴) | |
9 | 7, 8 | mpbi 229 | . . . 4 ⊢ ◡◡◡𝐴 = ◡𝐴 |
10 | 9 | funeqi 6570 | . . 3 ⊢ (Fun ◡◡◡𝐴 ↔ Fun ◡𝐴) |
11 | 6, 10 | anbi12ci 629 | . 2 ⊢ ((◡◡𝐴:dom 𝐴⟶V ∧ Fun ◡◡◡𝐴) ↔ (Fun ◡𝐴 ∧ Fun ◡◡𝐴)) |
12 | 1, 11 | bitri 275 | 1 ⊢ (◡◡𝐴:dom 𝐴–1-1→V ↔ (Fun ◡𝐴 ∧ Fun ◡◡𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 Vcvv 3475 ◡ccnv 5676 dom cdm 5677 Rel wrel 5682 Fun wfun 6538 Fn wfn 6539 ⟶wf 6540 –1-1→wf1 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |