MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cnvcnv Structured version   Visualization version   GIF version

Theorem f1cnvcnv 6728
Description: Two ways to express that a set 𝐴 (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
f1cnvcnv (𝐴:dom 𝐴1-1→V ↔ (Fun 𝐴 ∧ Fun 𝐴))

Proof of Theorem f1cnvcnv
StepHypRef Expression
1 df-f1 6486 . 2 (𝐴:dom 𝐴1-1→V ↔ (𝐴:dom 𝐴⟶V ∧ Fun 𝐴))
2 dffn2 6653 . . . 4 (𝐴 Fn dom 𝐴𝐴:dom 𝐴⟶V)
3 dmcnvcnv 5872 . . . . 5 dom 𝐴 = dom 𝐴
4 df-fn 6484 . . . . 5 (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴))
53, 4mpbiran2 710 . . . 4 (𝐴 Fn dom 𝐴 ↔ Fun 𝐴)
62, 5bitr3i 277 . . 3 (𝐴:dom 𝐴⟶V ↔ Fun 𝐴)
7 relcnv 6052 . . . . 5 Rel 𝐴
8 dfrel2 6136 . . . . 5 (Rel 𝐴𝐴 = 𝐴)
97, 8mpbi 230 . . . 4 𝐴 = 𝐴
109funeqi 6502 . . 3 (Fun 𝐴 ↔ Fun 𝐴)
116, 10anbi12ci 629 . 2 ((𝐴:dom 𝐴⟶V ∧ Fun 𝐴) ↔ (Fun 𝐴 ∧ Fun 𝐴))
121, 11bitri 275 1 (𝐴:dom 𝐴1-1→V ↔ (Fun 𝐴 ∧ Fun 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  Vcvv 3436  ccnv 5613  dom cdm 5614  Rel wrel 5619  Fun wfun 6475   Fn wfn 6476  wf 6477  1-1wf1 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator