MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cnvcnv Structured version   Visualization version   GIF version

Theorem f1cnvcnv 6664
Description: Two ways to express that a set 𝐴 (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
f1cnvcnv (𝐴:dom 𝐴1-1→V ↔ (Fun 𝐴 ∧ Fun 𝐴))

Proof of Theorem f1cnvcnv
StepHypRef Expression
1 df-f1 6423 . 2 (𝐴:dom 𝐴1-1→V ↔ (𝐴:dom 𝐴⟶V ∧ Fun 𝐴))
2 dffn2 6586 . . . 4 (𝐴 Fn dom 𝐴𝐴:dom 𝐴⟶V)
3 dmcnvcnv 5831 . . . . 5 dom 𝐴 = dom 𝐴
4 df-fn 6421 . . . . 5 (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴))
53, 4mpbiran2 706 . . . 4 (𝐴 Fn dom 𝐴 ↔ Fun 𝐴)
62, 5bitr3i 276 . . 3 (𝐴:dom 𝐴⟶V ↔ Fun 𝐴)
7 relcnv 6001 . . . . 5 Rel 𝐴
8 dfrel2 6081 . . . . 5 (Rel 𝐴𝐴 = 𝐴)
97, 8mpbi 229 . . . 4 𝐴 = 𝐴
109funeqi 6439 . . 3 (Fun 𝐴 ↔ Fun 𝐴)
116, 10anbi12ci 627 . 2 ((𝐴:dom 𝐴⟶V ∧ Fun 𝐴) ↔ (Fun 𝐴 ∧ Fun 𝐴))
121, 11bitri 274 1 (𝐴:dom 𝐴1-1→V ↔ (Fun 𝐴 ∧ Fun 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  Vcvv 3422  ccnv 5579  dom cdm 5580  Rel wrel 5585  Fun wfun 6412   Fn wfn 6413  wf 6414  1-1wf1 6415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator