| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1cnvcnv | Structured version Visualization version GIF version | ||
| Description: Two ways to express that a set 𝐴 (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| f1cnvcnv | ⊢ (◡◡𝐴:dom 𝐴–1-1→V ↔ (Fun ◡𝐴 ∧ Fun ◡◡𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1 6486 | . 2 ⊢ (◡◡𝐴:dom 𝐴–1-1→V ↔ (◡◡𝐴:dom 𝐴⟶V ∧ Fun ◡◡◡𝐴)) | |
| 2 | dffn2 6653 | . . . 4 ⊢ (◡◡𝐴 Fn dom 𝐴 ↔ ◡◡𝐴:dom 𝐴⟶V) | |
| 3 | dmcnvcnv 5872 | . . . . 5 ⊢ dom ◡◡𝐴 = dom 𝐴 | |
| 4 | df-fn 6484 | . . . . 5 ⊢ (◡◡𝐴 Fn dom 𝐴 ↔ (Fun ◡◡𝐴 ∧ dom ◡◡𝐴 = dom 𝐴)) | |
| 5 | 3, 4 | mpbiran2 710 | . . . 4 ⊢ (◡◡𝐴 Fn dom 𝐴 ↔ Fun ◡◡𝐴) |
| 6 | 2, 5 | bitr3i 277 | . . 3 ⊢ (◡◡𝐴:dom 𝐴⟶V ↔ Fun ◡◡𝐴) |
| 7 | relcnv 6052 | . . . . 5 ⊢ Rel ◡𝐴 | |
| 8 | dfrel2 6136 | . . . . 5 ⊢ (Rel ◡𝐴 ↔ ◡◡◡𝐴 = ◡𝐴) | |
| 9 | 7, 8 | mpbi 230 | . . . 4 ⊢ ◡◡◡𝐴 = ◡𝐴 |
| 10 | 9 | funeqi 6502 | . . 3 ⊢ (Fun ◡◡◡𝐴 ↔ Fun ◡𝐴) |
| 11 | 6, 10 | anbi12ci 629 | . 2 ⊢ ((◡◡𝐴:dom 𝐴⟶V ∧ Fun ◡◡◡𝐴) ↔ (Fun ◡𝐴 ∧ Fun ◡◡𝐴)) |
| 12 | 1, 11 | bitri 275 | 1 ⊢ (◡◡𝐴:dom 𝐴–1-1→V ↔ (Fun ◡𝐴 ∧ Fun ◡◡𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 Vcvv 3436 ◡ccnv 5613 dom cdm 5614 Rel wrel 5619 Fun wfun 6475 Fn wfn 6476 ⟶wf 6477 –1-1→wf1 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |