MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cnvcnv Structured version   Visualization version   GIF version

Theorem f1cnvcnv 6768
Description: Two ways to express that a set 𝐴 (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
f1cnvcnv (𝐴:dom 𝐴1-1→V ↔ (Fun 𝐴 ∧ Fun 𝐴))

Proof of Theorem f1cnvcnv
StepHypRef Expression
1 df-f1 6519 . 2 (𝐴:dom 𝐴1-1→V ↔ (𝐴:dom 𝐴⟶V ∧ Fun 𝐴))
2 dffn2 6693 . . . 4 (𝐴 Fn dom 𝐴𝐴:dom 𝐴⟶V)
3 dmcnvcnv 5900 . . . . 5 dom 𝐴 = dom 𝐴
4 df-fn 6517 . . . . 5 (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴))
53, 4mpbiran2 710 . . . 4 (𝐴 Fn dom 𝐴 ↔ Fun 𝐴)
62, 5bitr3i 277 . . 3 (𝐴:dom 𝐴⟶V ↔ Fun 𝐴)
7 relcnv 6078 . . . . 5 Rel 𝐴
8 dfrel2 6165 . . . . 5 (Rel 𝐴𝐴 = 𝐴)
97, 8mpbi 230 . . . 4 𝐴 = 𝐴
109funeqi 6540 . . 3 (Fun 𝐴 ↔ Fun 𝐴)
116, 10anbi12ci 629 . 2 ((𝐴:dom 𝐴⟶V ∧ Fun 𝐴) ↔ (Fun 𝐴 ∧ Fun 𝐴))
121, 11bitri 275 1 (𝐴:dom 𝐴1-1→V ↔ (Fun 𝐴 ∧ Fun 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  Vcvv 3450  ccnv 5640  dom cdm 5641  Rel wrel 5646  Fun wfun 6508   Fn wfn 6509  wf 6510  1-1wf1 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator