MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdm2 Structured version   Visualization version   GIF version

Theorem resdm2 6262
Description: A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
resdm2 (𝐴 ↾ dom 𝐴) = 𝐴

Proof of Theorem resdm2
StepHypRef Expression
1 rescnvcnv 6235 . 2 (𝐴 ↾ dom 𝐴) = (𝐴 ↾ dom 𝐴)
2 relcnv 6134 . . 3 Rel 𝐴
3 resdm 6055 . . 3 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
42, 3ax-mp 5 . 2 (𝐴 ↾ dom 𝐴) = 𝐴
5 dmcnvcnv 5958 . . 3 dom 𝐴 = dom 𝐴
65reseq2i 6006 . 2 (𝐴 ↾ dom 𝐴) = (𝐴 ↾ dom 𝐴)
71, 4, 63eqtr3ri 2777 1 (𝐴 ↾ dom 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  ccnv 5699  dom cdm 5700  cres 5702  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712
This theorem is referenced by:  resdmres  6263  fimacnvinrn  7105  dfrel5  38302
  Copyright terms: Public domain W3C validator