Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resdm2 | Structured version Visualization version GIF version |
Description: A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007.) |
Ref | Expression |
---|---|
resdm2 | ⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescnvcnv 6096 | . 2 ⊢ (◡◡𝐴 ↾ dom ◡◡𝐴) = (𝐴 ↾ dom ◡◡𝐴) | |
2 | relcnv 6001 | . . 3 ⊢ Rel ◡◡𝐴 | |
3 | resdm 5925 | . . 3 ⊢ (Rel ◡◡𝐴 → (◡◡𝐴 ↾ dom ◡◡𝐴) = ◡◡𝐴) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (◡◡𝐴 ↾ dom ◡◡𝐴) = ◡◡𝐴 |
5 | dmcnvcnv 5831 | . . 3 ⊢ dom ◡◡𝐴 = dom 𝐴 | |
6 | 5 | reseq2i 5877 | . 2 ⊢ (𝐴 ↾ dom ◡◡𝐴) = (𝐴 ↾ dom 𝐴) |
7 | 1, 4, 6 | 3eqtr3ri 2775 | 1 ⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ◡ccnv 5579 dom cdm 5580 ↾ cres 5582 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 |
This theorem is referenced by: resdmres 6124 fimacnvinrn 6931 dfrel5 36408 |
Copyright terms: Public domain | W3C validator |