Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resdm2 | Structured version Visualization version GIF version |
Description: A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007.) |
Ref | Expression |
---|---|
resdm2 | ⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescnvcnv 6033 | . 2 ⊢ (◡◡𝐴 ↾ dom ◡◡𝐴) = (𝐴 ↾ dom ◡◡𝐴) | |
2 | relcnv 5939 | . . 3 ⊢ Rel ◡◡𝐴 | |
3 | resdm 5868 | . . 3 ⊢ (Rel ◡◡𝐴 → (◡◡𝐴 ↾ dom ◡◡𝐴) = ◡◡𝐴) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (◡◡𝐴 ↾ dom ◡◡𝐴) = ◡◡𝐴 |
5 | dmcnvcnv 5774 | . . 3 ⊢ dom ◡◡𝐴 = dom 𝐴 | |
6 | 5 | reseq2i 5820 | . 2 ⊢ (𝐴 ↾ dom ◡◡𝐴) = (𝐴 ↾ dom 𝐴) |
7 | 1, 4, 6 | 3eqtr3ri 2790 | 1 ⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ◡ccnv 5523 dom cdm 5524 ↾ cres 5526 Rel wrel 5529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-xp 5530 df-rel 5531 df-cnv 5532 df-dm 5534 df-rn 5535 df-res 5536 |
This theorem is referenced by: resdmres 6061 fimacnvinrn 6831 dfrel5 36043 |
Copyright terms: Public domain | W3C validator |