| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdm2 | Structured version Visualization version GIF version | ||
| Description: A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007.) |
| Ref | Expression |
|---|---|
| resdm2 | ⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescnvcnv 6151 | . 2 ⊢ (◡◡𝐴 ↾ dom ◡◡𝐴) = (𝐴 ↾ dom ◡◡𝐴) | |
| 2 | relcnv 6052 | . . 3 ⊢ Rel ◡◡𝐴 | |
| 3 | resdm 5974 | . . 3 ⊢ (Rel ◡◡𝐴 → (◡◡𝐴 ↾ dom ◡◡𝐴) = ◡◡𝐴) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (◡◡𝐴 ↾ dom ◡◡𝐴) = ◡◡𝐴 |
| 5 | dmcnvcnv 5872 | . . 3 ⊢ dom ◡◡𝐴 = dom 𝐴 | |
| 6 | 5 | reseq2i 5924 | . 2 ⊢ (𝐴 ↾ dom ◡◡𝐴) = (𝐴 ↾ dom 𝐴) |
| 7 | 1, 4, 6 | 3eqtr3ri 2763 | 1 ⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ◡ccnv 5613 dom cdm 5614 ↾ cres 5616 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 |
| This theorem is referenced by: resdmres 6179 fimacnvinrn 7004 dfrel5 38382 |
| Copyright terms: Public domain | W3C validator |