| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdm2 | Structured version Visualization version GIF version | ||
| Description: A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007.) |
| Ref | Expression |
|---|---|
| resdm2 | ⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescnvcnv 6177 | . 2 ⊢ (◡◡𝐴 ↾ dom ◡◡𝐴) = (𝐴 ↾ dom ◡◡𝐴) | |
| 2 | relcnv 6075 | . . 3 ⊢ Rel ◡◡𝐴 | |
| 3 | resdm 5997 | . . 3 ⊢ (Rel ◡◡𝐴 → (◡◡𝐴 ↾ dom ◡◡𝐴) = ◡◡𝐴) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (◡◡𝐴 ↾ dom ◡◡𝐴) = ◡◡𝐴 |
| 5 | dmcnvcnv 5897 | . . 3 ⊢ dom ◡◡𝐴 = dom 𝐴 | |
| 6 | 5 | reseq2i 5947 | . 2 ⊢ (𝐴 ↾ dom ◡◡𝐴) = (𝐴 ↾ dom 𝐴) |
| 7 | 1, 4, 6 | 3eqtr3ri 2761 | 1 ⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5637 dom cdm 5638 ↾ cres 5640 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 |
| This theorem is referenced by: resdmres 6205 fimacnvinrn 7043 dfrel5 38328 |
| Copyright terms: Public domain | W3C validator |