![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmcoss2 | Structured version Visualization version GIF version |
Description: The domain of cosets is the range. (Contributed by Peter Mazsa, 27-Dec-2018.) |
Ref | Expression |
---|---|
dmcoss2 | ⊢ dom ≀ 𝑅 = ran 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmcoss3 38449 | . 2 ⊢ dom ≀ 𝑅 = dom ◡𝑅 | |
2 | df-rn 5704 | . 2 ⊢ ran 𝑅 = dom ◡𝑅 | |
3 | 1, 2 | eqtr4i 2768 | 1 ⊢ dom ≀ 𝑅 = ran 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ◡ccnv 5692 dom cdm 5693 ran crn 5694 ≀ ccoss 38176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-coss 38407 |
This theorem is referenced by: dm1cosscnvepres 38452 |
Copyright terms: Public domain | W3C validator |