![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmcoss2 | Structured version Visualization version GIF version |
Description: The domain of cosets is the range. (Contributed by Peter Mazsa, 27-Dec-2018.) |
Ref | Expression |
---|---|
dmcoss2 | ⊢ dom ≀ 𝑅 = ran 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmcoss3 38151 | . 2 ⊢ dom ≀ 𝑅 = dom ◡𝑅 | |
2 | df-rn 5693 | . 2 ⊢ ran 𝑅 = dom ◡𝑅 | |
3 | 1, 2 | eqtr4i 2757 | 1 ⊢ dom ≀ 𝑅 = ran 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ◡ccnv 5681 dom cdm 5682 ran crn 5683 ≀ ccoss 37876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-coss 38109 |
This theorem is referenced by: dm1cosscnvepres 38154 |
Copyright terms: Public domain | W3C validator |