Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dm1cosscnvepres Structured version   Visualization version   GIF version

Theorem dm1cosscnvepres 37631
Description: The domain of cosets of the restricted converse epsilon relation is the union of the restriction. (Contributed by Peter Mazsa, 18-May-2019.) (Revised by Peter Mazsa, 26-Sep-2021.)
Assertion
Ref Expression
dm1cosscnvepres dom ≀ ( E ↾ 𝐴) = 𝐴

Proof of Theorem dm1cosscnvepres
StepHypRef Expression
1 dmcoss2 37629 . 2 dom ≀ ( E ↾ 𝐴) = ran ( E ↾ 𝐴)
2 rncnvepres 37477 . 2 ran ( E ↾ 𝐴) = 𝐴
31, 2eqtri 2758 1 dom ≀ ( E ↾ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   cuni 4909   E cep 5580  ccnv 5676  dom cdm 5677  ran crn 5678  cres 5679  ccoss 37348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-eprel 5581  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-coss 37586
This theorem is referenced by:  dmcoels  37632
  Copyright terms: Public domain W3C validator