![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dm1cosscnvepres | Structured version Visualization version GIF version |
Description: The domain of cosets of the restricted converse epsilon relation is the union of the restriction. (Contributed by Peter Mazsa, 18-May-2019.) (Revised by Peter Mazsa, 26-Sep-2021.) |
Ref | Expression |
---|---|
dm1cosscnvepres | ⊢ dom ≀ (◡ E ↾ 𝐴) = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmcoss2 38403 | . 2 ⊢ dom ≀ (◡ E ↾ 𝐴) = ran (◡ E ↾ 𝐴) | |
2 | rncnvepres 38252 | . 2 ⊢ ran (◡ E ↾ 𝐴) = ∪ 𝐴 | |
3 | 1, 2 | eqtri 2768 | 1 ⊢ dom ≀ (◡ E ↾ 𝐴) = ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cuni 4931 E cep 5598 ◡ccnv 5694 dom cdm 5695 ran crn 5696 ↾ cres 5697 ≀ ccoss 38128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-eprel 5599 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-coss 38360 |
This theorem is referenced by: dmcoels 38406 |
Copyright terms: Public domain | W3C validator |