Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dm1cosscnvepres | Structured version Visualization version GIF version |
Description: The domain of cosets of the restricted converse epsilon relation is the union of the restriction. (Contributed by Peter Mazsa, 18-May-2019.) (Revised by Peter Mazsa, 26-Sep-2021.) |
Ref | Expression |
---|---|
dm1cosscnvepres | ⊢ dom ≀ (◡ E ↾ 𝐴) = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmcoss2 36572 | . 2 ⊢ dom ≀ (◡ E ↾ 𝐴) = ran (◡ E ↾ 𝐴) | |
2 | rncnvepres 36439 | . 2 ⊢ ran (◡ E ↾ 𝐴) = ∪ 𝐴 | |
3 | 1, 2 | eqtri 2766 | 1 ⊢ dom ≀ (◡ E ↾ 𝐴) = ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cuni 4839 E cep 5494 ◡ccnv 5588 dom cdm 5589 ran crn 5590 ↾ cres 5591 ≀ ccoss 36333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-eprel 5495 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-coss 36537 |
This theorem is referenced by: dmcoels 36575 |
Copyright terms: Public domain | W3C validator |