![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dm1cosscnvepres | Structured version Visualization version GIF version |
Description: The domain of cosets of the restricted converse epsilon relation is the union of the restriction. (Contributed by Peter Mazsa, 18-May-2019.) (Revised by Peter Mazsa, 26-Sep-2021.) |
Ref | Expression |
---|---|
dm1cosscnvepres | ⊢ dom ≀ (◡ E ↾ 𝐴) = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmcoss2 37629 | . 2 ⊢ dom ≀ (◡ E ↾ 𝐴) = ran (◡ E ↾ 𝐴) | |
2 | rncnvepres 37477 | . 2 ⊢ ran (◡ E ↾ 𝐴) = ∪ 𝐴 | |
3 | 1, 2 | eqtri 2758 | 1 ⊢ dom ≀ (◡ E ↾ 𝐴) = ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cuni 4909 E cep 5580 ◡ccnv 5676 dom cdm 5677 ran crn 5678 ↾ cres 5679 ≀ ccoss 37348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-eprel 5581 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-coss 37586 |
This theorem is referenced by: dmcoels 37632 |
Copyright terms: Public domain | W3C validator |