Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dm1cosscnvepres Structured version   Visualization version   GIF version

Theorem dm1cosscnvepres 38405
Description: The domain of cosets of the restricted converse epsilon relation is the union of the restriction. (Contributed by Peter Mazsa, 18-May-2019.) (Revised by Peter Mazsa, 26-Sep-2021.)
Assertion
Ref Expression
dm1cosscnvepres dom ≀ ( E ↾ 𝐴) = 𝐴

Proof of Theorem dm1cosscnvepres
StepHypRef Expression
1 dmcoss2 38403 . 2 dom ≀ ( E ↾ 𝐴) = ran ( E ↾ 𝐴)
2 rncnvepres 38252 . 2 ran ( E ↾ 𝐴) = 𝐴
31, 2eqtri 2768 1 dom ≀ ( E ↾ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537   cuni 4931   E cep 5598  ccnv 5694  dom cdm 5695  ran crn 5696  cres 5697  ccoss 38128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-eprel 5599  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-coss 38360
This theorem is referenced by:  dmcoels  38406
  Copyright terms: Public domain W3C validator