![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmcoss3 | Structured version Visualization version GIF version |
Description: The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.) |
Ref | Expression |
---|---|
dmcoss3 | ⊢ dom ≀ 𝑅 = dom ◡𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcoss3 38408 | . . 3 ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) | |
2 | 1 | dmeqi 5919 | . 2 ⊢ dom ≀ 𝑅 = dom (𝑅 ∘ ◡𝑅) |
3 | rncnv 38294 | . . . 4 ⊢ ran ◡𝑅 = dom 𝑅 | |
4 | 3 | eqimssi 4057 | . . 3 ⊢ ran ◡𝑅 ⊆ dom 𝑅 |
5 | dmcosseq 5991 | . . 3 ⊢ (ran ◡𝑅 ⊆ dom 𝑅 → dom (𝑅 ∘ ◡𝑅) = dom ◡𝑅) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ dom (𝑅 ∘ ◡𝑅) = dom ◡𝑅 |
7 | 2, 6 | eqtri 2764 | 1 ⊢ dom ≀ 𝑅 = dom ◡𝑅 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ⊆ wss 3964 ◡ccnv 5689 dom cdm 5690 ran crn 5691 ∘ ccom 5694 ≀ ccoss 38174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5150 df-opab 5212 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-coss 38405 |
This theorem is referenced by: dmcoss2 38448 eldmcoss 38452 |
Copyright terms: Public domain | W3C validator |