Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmcoss3 | Structured version Visualization version GIF version |
Description: The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.) |
Ref | Expression |
---|---|
dmcoss3 | ⊢ dom ≀ 𝑅 = dom ◡𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcoss3 36540 | . . 3 ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) | |
2 | 1 | dmeqi 5813 | . 2 ⊢ dom ≀ 𝑅 = dom (𝑅 ∘ ◡𝑅) |
3 | rncnv 36436 | . . . 4 ⊢ ran ◡𝑅 = dom 𝑅 | |
4 | 3 | eqimssi 3979 | . . 3 ⊢ ran ◡𝑅 ⊆ dom 𝑅 |
5 | dmcosseq 5882 | . . 3 ⊢ (ran ◡𝑅 ⊆ dom 𝑅 → dom (𝑅 ∘ ◡𝑅) = dom ◡𝑅) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ dom (𝑅 ∘ ◡𝑅) = dom ◡𝑅 |
7 | 2, 6 | eqtri 2766 | 1 ⊢ dom ≀ 𝑅 = dom ◡𝑅 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3887 ◡ccnv 5588 dom cdm 5589 ran crn 5590 ∘ ccom 5593 ≀ ccoss 36333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-coss 36537 |
This theorem is referenced by: dmcoss2 36572 eldmcoss 36576 |
Copyright terms: Public domain | W3C validator |