Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmcoss3 Structured version   Visualization version   GIF version

Theorem dmcoss3 38438
Description: The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.)
Assertion
Ref Expression
dmcoss3 dom ≀ 𝑅 = dom 𝑅

Proof of Theorem dmcoss3
StepHypRef Expression
1 dfcoss3 38399 . . 3 𝑅 = (𝑅𝑅)
21dmeqi 5876 . 2 dom ≀ 𝑅 = dom (𝑅𝑅)
3 rncnv 38285 . . . 4 ran 𝑅 = dom 𝑅
43eqimssi 4015 . . 3 ran 𝑅 ⊆ dom 𝑅
5 dmcosseq 5948 . . 3 (ran 𝑅 ⊆ dom 𝑅 → dom (𝑅𝑅) = dom 𝑅)
64, 5ax-mp 5 . 2 dom (𝑅𝑅) = dom 𝑅
72, 6eqtri 2753 1 dom ≀ 𝑅 = dom 𝑅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3922  ccnv 5645  dom cdm 5646  ran crn 5647  ccom 5650  ccoss 38166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-coss 38396
This theorem is referenced by:  dmcoss2  38439  eldmcoss  38443
  Copyright terms: Public domain W3C validator