| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmcoss3 | Structured version Visualization version GIF version | ||
| Description: The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.) |
| Ref | Expression |
|---|---|
| dmcoss3 | ⊢ dom ≀ 𝑅 = dom ◡𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcoss3 38399 | . . 3 ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) | |
| 2 | 1 | dmeqi 5876 | . 2 ⊢ dom ≀ 𝑅 = dom (𝑅 ∘ ◡𝑅) |
| 3 | rncnv 38285 | . . . 4 ⊢ ran ◡𝑅 = dom 𝑅 | |
| 4 | 3 | eqimssi 4015 | . . 3 ⊢ ran ◡𝑅 ⊆ dom 𝑅 |
| 5 | dmcosseq 5948 | . . 3 ⊢ (ran ◡𝑅 ⊆ dom 𝑅 → dom (𝑅 ∘ ◡𝑅) = dom ◡𝑅) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ dom (𝑅 ∘ ◡𝑅) = dom ◡𝑅 |
| 7 | 2, 6 | eqtri 2753 | 1 ⊢ dom ≀ 𝑅 = dom ◡𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3922 ◡ccnv 5645 dom cdm 5646 ran crn 5647 ∘ ccom 5650 ≀ ccoss 38166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-coss 38396 |
| This theorem is referenced by: dmcoss2 38439 eldmcoss 38443 |
| Copyright terms: Public domain | W3C validator |