Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmcoss3 Structured version   Visualization version   GIF version

Theorem dmcoss3 37835
Description: The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.)
Assertion
Ref Expression
dmcoss3 dom ≀ 𝑅 = dom 𝑅

Proof of Theorem dmcoss3
StepHypRef Expression
1 dfcoss3 37796 . . 3 𝑅 = (𝑅𝑅)
21dmeqi 5897 . 2 dom ≀ 𝑅 = dom (𝑅𝑅)
3 rncnv 37681 . . . 4 ran 𝑅 = dom 𝑅
43eqimssi 4037 . . 3 ran 𝑅 ⊆ dom 𝑅
5 dmcosseq 5965 . . 3 (ran 𝑅 ⊆ dom 𝑅 → dom (𝑅𝑅) = dom 𝑅)
64, 5ax-mp 5 . 2 dom (𝑅𝑅) = dom 𝑅
72, 6eqtri 2754 1 dom ≀ 𝑅 = dom 𝑅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wss 3943  ccnv 5668  dom cdm 5669  ran crn 5670  ccom 5673  ccoss 37555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-coss 37793
This theorem is referenced by:  dmcoss2  37836  eldmcoss  37840
  Copyright terms: Public domain W3C validator