Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmcoss3 | Structured version Visualization version GIF version |
Description: The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.) |
Ref | Expression |
---|---|
dmcoss3 | ⊢ dom ≀ 𝑅 = dom ◡𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcoss3 36536 | . . 3 ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) | |
2 | 1 | dmeqi 5812 | . 2 ⊢ dom ≀ 𝑅 = dom (𝑅 ∘ ◡𝑅) |
3 | rncnv 36432 | . . . 4 ⊢ ran ◡𝑅 = dom 𝑅 | |
4 | 3 | eqimssi 3984 | . . 3 ⊢ ran ◡𝑅 ⊆ dom 𝑅 |
5 | dmcosseq 5881 | . . 3 ⊢ (ran ◡𝑅 ⊆ dom 𝑅 → dom (𝑅 ∘ ◡𝑅) = dom ◡𝑅) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ dom (𝑅 ∘ ◡𝑅) = dom ◡𝑅 |
7 | 2, 6 | eqtri 2768 | 1 ⊢ dom ≀ 𝑅 = dom ◡𝑅 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ⊆ wss 3892 ◡ccnv 5589 dom cdm 5590 ran crn 5591 ∘ ccom 5594 ≀ ccoss 36329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-coss 36533 |
This theorem is referenced by: dmcoss2 36568 eldmcoss 36572 |
Copyright terms: Public domain | W3C validator |