| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmcoss3 | Structured version Visualization version GIF version | ||
| Description: The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.) |
| Ref | Expression |
|---|---|
| dmcoss3 | ⊢ dom ≀ 𝑅 = dom ◡𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcoss3 38349 | . . 3 ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) | |
| 2 | 1 | dmeqi 5895 | . 2 ⊢ dom ≀ 𝑅 = dom (𝑅 ∘ ◡𝑅) |
| 3 | rncnv 38235 | . . . 4 ⊢ ran ◡𝑅 = dom 𝑅 | |
| 4 | 3 | eqimssi 4024 | . . 3 ⊢ ran ◡𝑅 ⊆ dom 𝑅 |
| 5 | dmcosseq 5967 | . . 3 ⊢ (ran ◡𝑅 ⊆ dom 𝑅 → dom (𝑅 ∘ ◡𝑅) = dom ◡𝑅) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ dom (𝑅 ∘ ◡𝑅) = dom ◡𝑅 |
| 7 | 2, 6 | eqtri 2757 | 1 ⊢ dom ≀ 𝑅 = dom ◡𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ⊆ wss 3931 ◡ccnv 5664 dom cdm 5665 ran crn 5666 ∘ ccom 5669 ≀ ccoss 38116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-coss 38346 |
| This theorem is referenced by: dmcoss2 38389 eldmcoss 38393 |
| Copyright terms: Public domain | W3C validator |