Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmcoss3 Structured version   Visualization version   GIF version

Theorem dmcoss3 38055
Description: The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.)
Assertion
Ref Expression
dmcoss3 dom ≀ 𝑅 = dom 𝑅

Proof of Theorem dmcoss3
StepHypRef Expression
1 dfcoss3 38016 . . 3 𝑅 = (𝑅𝑅)
21dmeqi 5907 . 2 dom ≀ 𝑅 = dom (𝑅𝑅)
3 rncnv 37902 . . . 4 ran 𝑅 = dom 𝑅
43eqimssi 4037 . . 3 ran 𝑅 ⊆ dom 𝑅
5 dmcosseq 5976 . . 3 (ran 𝑅 ⊆ dom 𝑅 → dom (𝑅𝑅) = dom 𝑅)
64, 5ax-mp 5 . 2 dom (𝑅𝑅) = dom 𝑅
72, 6eqtri 2753 1 dom ≀ 𝑅 = dom 𝑅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wss 3944  ccnv 5677  dom cdm 5678  ran crn 5679  ccom 5682  ccoss 37779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-coss 38013
This theorem is referenced by:  dmcoss2  38056  eldmcoss  38060
  Copyright terms: Public domain W3C validator