| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmcoss3 | Structured version Visualization version GIF version | ||
| Description: The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.) |
| Ref | Expression |
|---|---|
| dmcoss3 | ⊢ dom ≀ 𝑅 = dom ◡𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcoss3 38537 | . . 3 ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) | |
| 2 | 1 | dmeqi 5848 | . 2 ⊢ dom ≀ 𝑅 = dom (𝑅 ∘ ◡𝑅) |
| 3 | rncnv 38359 | . . . 4 ⊢ ran ◡𝑅 = dom 𝑅 | |
| 4 | 3 | eqimssi 3991 | . . 3 ⊢ ran ◡𝑅 ⊆ dom 𝑅 |
| 5 | dmcosseq 5921 | . . 3 ⊢ (ran ◡𝑅 ⊆ dom 𝑅 → dom (𝑅 ∘ ◡𝑅) = dom ◡𝑅) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ dom (𝑅 ∘ ◡𝑅) = dom ◡𝑅 |
| 7 | 2, 6 | eqtri 2756 | 1 ⊢ dom ≀ 𝑅 = dom ◡𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊆ wss 3898 ◡ccnv 5618 dom cdm 5619 ran crn 5620 ∘ ccom 5623 ≀ ccoss 38243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-coss 38534 |
| This theorem is referenced by: dmcoss2 38577 eldmcoss 38581 |
| Copyright terms: Public domain | W3C validator |