Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmcoss3 Structured version   Visualization version   GIF version

Theorem dmcoss3 36571
Description: The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.)
Assertion
Ref Expression
dmcoss3 dom ≀ 𝑅 = dom 𝑅

Proof of Theorem dmcoss3
StepHypRef Expression
1 dfcoss3 36540 . . 3 𝑅 = (𝑅𝑅)
21dmeqi 5813 . 2 dom ≀ 𝑅 = dom (𝑅𝑅)
3 rncnv 36436 . . . 4 ran 𝑅 = dom 𝑅
43eqimssi 3979 . . 3 ran 𝑅 ⊆ dom 𝑅
5 dmcosseq 5882 . . 3 (ran 𝑅 ⊆ dom 𝑅 → dom (𝑅𝑅) = dom 𝑅)
64, 5ax-mp 5 . 2 dom (𝑅𝑅) = dom 𝑅
72, 6eqtri 2766 1 dom ≀ 𝑅 = dom 𝑅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wss 3887  ccnv 5588  dom cdm 5589  ran crn 5590  ccom 5593  ccoss 36333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-coss 36537
This theorem is referenced by:  dmcoss2  36572  eldmcoss  36576
  Copyright terms: Public domain W3C validator