HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdi2 Structured version   Visualization version   GIF version

Theorem dmdi2 30666
Description: Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.)
Assertion
Ref Expression
dmdi2 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀* 𝐵𝐵𝐶)) → (𝐶 ∩ (𝐴 𝐵)) ⊆ ((𝐶𝐴) ∨ 𝐵))

Proof of Theorem dmdi2
StepHypRef Expression
1 dmdi 30664 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀* 𝐵𝐵𝐶)) → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))
2 eqimss2 3978 . 2 (((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)) → (𝐶 ∩ (𝐴 𝐵)) ⊆ ((𝐶𝐴) ∨ 𝐵))
31, 2syl 17 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀* 𝐵𝐵𝐶)) → (𝐶 ∩ (𝐴 𝐵)) ⊆ ((𝐶𝐴) ∨ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cin 3886  wss 3887   class class class wbr 5074  (class class class)co 7275   C cch 29291   chj 29295   𝑀* cdmd 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-iota 6391  df-fv 6441  df-ov 7278  df-dmd 30643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator