HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdi2 Structured version   Visualization version   GIF version

Theorem dmdi2 30954
Description: Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.)
Assertion
Ref Expression
dmdi2 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀* 𝐵𝐵𝐶)) → (𝐶 ∩ (𝐴 𝐵)) ⊆ ((𝐶𝐴) ∨ 𝐵))

Proof of Theorem dmdi2
StepHypRef Expression
1 dmdi 30952 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀* 𝐵𝐵𝐶)) → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))
2 eqimss2 3993 . 2 (((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)) → (𝐶 ∩ (𝐴 𝐵)) ⊆ ((𝐶𝐴) ∨ 𝐵))
31, 2syl 17 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀* 𝐵𝐵𝐶)) → (𝐶 ∩ (𝐴 𝐵)) ⊆ ((𝐶𝐴) ∨ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  cin 3901  wss 3902   class class class wbr 5097  (class class class)co 7342   C cch 29579   chj 29583   𝑀* cdmd 29617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rab 3405  df-v 3444  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-opab 5160  df-iota 6436  df-fv 6492  df-ov 7345  df-dmd 30931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator