HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdi2 Structured version   Visualization version   GIF version

Theorem dmdi2 32251
Description: Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.)
Assertion
Ref Expression
dmdi2 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀* 𝐵𝐵𝐶)) → (𝐶 ∩ (𝐴 𝐵)) ⊆ ((𝐶𝐴) ∨ 𝐵))

Proof of Theorem dmdi2
StepHypRef Expression
1 dmdi 32249 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀* 𝐵𝐵𝐶)) → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))
2 eqimss2 4023 . 2 (((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)) → (𝐶 ∩ (𝐴 𝐵)) ⊆ ((𝐶𝐴) ∨ 𝐵))
31, 2syl 17 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀* 𝐵𝐵𝐶)) → (𝐶 ∩ (𝐴 𝐵)) ⊆ ((𝐶𝐴) ∨ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cin 3930  wss 3931   class class class wbr 5123  (class class class)co 7413   C cch 30876   chj 30880   𝑀* cdmd 30914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-iota 6494  df-fv 6549  df-ov 7416  df-dmd 32228
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator