![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > dmdi2 | Structured version Visualization version GIF version |
Description: Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmdi2 | ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝐶 ∩ 𝐴) ∨ℋ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmdi 29712 | . 2 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) | |
2 | eqimss2 3883 | . 2 ⊢ (((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝐶 ∩ 𝐴) ∨ℋ 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝐶 ∩ 𝐴) ∨ℋ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ∩ cin 3797 ⊆ wss 3798 class class class wbr 4875 (class class class)co 6910 Cℋ cch 28337 ∨ℋ chj 28341 𝑀ℋ* cdmd 28375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-iota 6090 df-fv 6135 df-ov 6913 df-dmd 29691 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |