HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdi Structured version   Visualization version   GIF version

Theorem dmdi 30643
Description: Consequence of the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdi (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀* 𝐵𝐵𝐶)) → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))

Proof of Theorem dmdi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmdbr 30640 . . . . 5 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
21biimpd 228 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 → ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
3 sseq2 3951 . . . . . 6 (𝑥 = 𝐶 → (𝐵𝑥𝐵𝐶))
4 ineq1 4144 . . . . . . . 8 (𝑥 = 𝐶 → (𝑥𝐴) = (𝐶𝐴))
54oveq1d 7283 . . . . . . 7 (𝑥 = 𝐶 → ((𝑥𝐴) ∨ 𝐵) = ((𝐶𝐴) ∨ 𝐵))
6 ineq1 4144 . . . . . . 7 (𝑥 = 𝐶 → (𝑥 ∩ (𝐴 𝐵)) = (𝐶 ∩ (𝐴 𝐵)))
75, 6eqeq12d 2755 . . . . . 6 (𝑥 = 𝐶 → (((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)) ↔ ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵))))
83, 7imbi12d 344 . . . . 5 (𝑥 = 𝐶 → ((𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) ↔ (𝐵𝐶 → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))))
98rspcv 3555 . . . 4 (𝐶C → (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → (𝐵𝐶 → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))))
102, 9sylan9 507 . . 3 (((𝐴C𝐵C ) ∧ 𝐶C ) → (𝐴 𝑀* 𝐵 → (𝐵𝐶 → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))))
11103impa 1108 . 2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝑀* 𝐵 → (𝐵𝐶 → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))))
1211imp32 418 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀* 𝐵𝐵𝐶)) → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  wral 3065  cin 3890  wss 3891   class class class wbr 5078  (class class class)co 7268   C cch 29270   chj 29274   𝑀* cdmd 29308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-iota 6388  df-fv 6438  df-ov 7271  df-dmd 30622
This theorem is referenced by:  dmdi2  30645  dmdsl3  30656  csmdsymi  30675  mdsymlem1  30744
  Copyright terms: Public domain W3C validator