HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdi Structured version   Visualization version   GIF version

Theorem dmdi 30660
Description: Consequence of the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdi (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀* 𝐵𝐵𝐶)) → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))

Proof of Theorem dmdi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmdbr 30657 . . . . 5 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
21biimpd 228 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 → ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
3 sseq2 3952 . . . . . 6 (𝑥 = 𝐶 → (𝐵𝑥𝐵𝐶))
4 ineq1 4145 . . . . . . . 8 (𝑥 = 𝐶 → (𝑥𝐴) = (𝐶𝐴))
54oveq1d 7286 . . . . . . 7 (𝑥 = 𝐶 → ((𝑥𝐴) ∨ 𝐵) = ((𝐶𝐴) ∨ 𝐵))
6 ineq1 4145 . . . . . . 7 (𝑥 = 𝐶 → (𝑥 ∩ (𝐴 𝐵)) = (𝐶 ∩ (𝐴 𝐵)))
75, 6eqeq12d 2756 . . . . . 6 (𝑥 = 𝐶 → (((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)) ↔ ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵))))
83, 7imbi12d 345 . . . . 5 (𝑥 = 𝐶 → ((𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) ↔ (𝐵𝐶 → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))))
98rspcv 3556 . . . 4 (𝐶C → (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → (𝐵𝐶 → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))))
102, 9sylan9 508 . . 3 (((𝐴C𝐵C ) ∧ 𝐶C ) → (𝐴 𝑀* 𝐵 → (𝐵𝐶 → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))))
11103impa 1109 . 2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝑀* 𝐵 → (𝐵𝐶 → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))))
1211imp32 419 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀* 𝐵𝐵𝐶)) → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wral 3066  cin 3891  wss 3892   class class class wbr 5079  (class class class)co 7271   C cch 29287   chj 29291   𝑀* cdmd 29325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-iota 6390  df-fv 6440  df-ov 7274  df-dmd 30639
This theorem is referenced by:  dmdi2  30662  dmdsl3  30673  csmdsymi  30692  mdsymlem1  30761
  Copyright terms: Public domain W3C validator