| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > dmdi | Structured version Visualization version GIF version | ||
| Description: Consequence of the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dmdi | ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmdbr 32318 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))))) | |
| 2 | 1 | biimpd 229 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 → ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))))) |
| 3 | sseq2 4010 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝐶)) | |
| 4 | ineq1 4213 | . . . . . . . 8 ⊢ (𝑥 = 𝐶 → (𝑥 ∩ 𝐴) = (𝐶 ∩ 𝐴)) | |
| 5 | 4 | oveq1d 7446 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = ((𝐶 ∩ 𝐴) ∨ℋ 𝐵)) |
| 6 | ineq1 4213 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) | |
| 7 | 5, 6 | eqeq12d 2753 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ↔ ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))) |
| 8 | 3, 7 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝐶 → ((𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))) ↔ (𝐵 ⊆ 𝐶 → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
| 9 | 8 | rspcv 3618 | . . . 4 ⊢ (𝐶 ∈ Cℋ → (∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))) → (𝐵 ⊆ 𝐶 → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
| 10 | 2, 9 | sylan9 507 | . . 3 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐶 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 → (𝐵 ⊆ 𝐶 → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
| 11 | 10 | 3impa 1110 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 → (𝐵 ⊆ 𝐶 → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
| 12 | 11 | imp32 418 | 1 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∩ cin 3950 ⊆ wss 3951 class class class wbr 5143 (class class class)co 7431 Cℋ cch 30948 ∨ℋ chj 30952 𝑀ℋ* cdmd 30986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-iota 6514 df-fv 6569 df-ov 7434 df-dmd 32300 |
| This theorem is referenced by: dmdi2 32323 dmdsl3 32334 csmdsymi 32353 mdsymlem1 32422 |
| Copyright terms: Public domain | W3C validator |