Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > dmdi | Structured version Visualization version GIF version |
Description: Consequence of the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmdi | ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmdbr 30710 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))))) | |
2 | 1 | biimpd 228 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 → ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))))) |
3 | sseq2 3952 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝐶)) | |
4 | ineq1 4145 | . . . . . . . 8 ⊢ (𝑥 = 𝐶 → (𝑥 ∩ 𝐴) = (𝐶 ∩ 𝐴)) | |
5 | 4 | oveq1d 7322 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = ((𝐶 ∩ 𝐴) ∨ℋ 𝐵)) |
6 | ineq1 4145 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) | |
7 | 5, 6 | eqeq12d 2752 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ↔ ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))) |
8 | 3, 7 | imbi12d 345 | . . . . 5 ⊢ (𝑥 = 𝐶 → ((𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))) ↔ (𝐵 ⊆ 𝐶 → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
9 | 8 | rspcv 3562 | . . . 4 ⊢ (𝐶 ∈ Cℋ → (∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))) → (𝐵 ⊆ 𝐶 → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
10 | 2, 9 | sylan9 509 | . . 3 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐶 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 → (𝐵 ⊆ 𝐶 → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
11 | 10 | 3impa 1110 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 → (𝐵 ⊆ 𝐶 → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
12 | 11 | imp32 420 | 1 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ∩ cin 3891 ⊆ wss 3892 class class class wbr 5081 (class class class)co 7307 Cℋ cch 29340 ∨ℋ chj 29344 𝑀ℋ* cdmd 29378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-iota 6410 df-fv 6466 df-ov 7310 df-dmd 30692 |
This theorem is referenced by: dmdi2 30715 dmdsl3 30726 csmdsymi 30745 mdsymlem1 30814 |
Copyright terms: Public domain | W3C validator |