Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > dmdi | Structured version Visualization version GIF version |
Description: Consequence of the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmdi | ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmdbr 30640 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))))) | |
2 | 1 | biimpd 228 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 → ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))))) |
3 | sseq2 3951 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝐶)) | |
4 | ineq1 4144 | . . . . . . . 8 ⊢ (𝑥 = 𝐶 → (𝑥 ∩ 𝐴) = (𝐶 ∩ 𝐴)) | |
5 | 4 | oveq1d 7283 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = ((𝐶 ∩ 𝐴) ∨ℋ 𝐵)) |
6 | ineq1 4144 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) | |
7 | 5, 6 | eqeq12d 2755 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ↔ ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))) |
8 | 3, 7 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝐶 → ((𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))) ↔ (𝐵 ⊆ 𝐶 → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
9 | 8 | rspcv 3555 | . . . 4 ⊢ (𝐶 ∈ Cℋ → (∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))) → (𝐵 ⊆ 𝐶 → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
10 | 2, 9 | sylan9 507 | . . 3 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐶 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 → (𝐵 ⊆ 𝐶 → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
11 | 10 | 3impa 1108 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 → (𝐵 ⊆ 𝐶 → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
12 | 11 | imp32 418 | 1 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ∩ cin 3890 ⊆ wss 3891 class class class wbr 5078 (class class class)co 7268 Cℋ cch 29270 ∨ℋ chj 29274 𝑀ℋ* cdmd 29308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-iota 6388 df-fv 6438 df-ov 7271 df-dmd 30622 |
This theorem is referenced by: dmdi2 30645 dmdsl3 30656 csmdsymi 30675 mdsymlem1 30744 |
Copyright terms: Public domain | W3C validator |