![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > dmdi | Structured version Visualization version GIF version |
Description: Consequence of the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmdi | ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmdbr 31547 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))))) | |
2 | 1 | biimpd 228 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 → ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))))) |
3 | sseq2 4008 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝐶)) | |
4 | ineq1 4205 | . . . . . . . 8 ⊢ (𝑥 = 𝐶 → (𝑥 ∩ 𝐴) = (𝐶 ∩ 𝐴)) | |
5 | 4 | oveq1d 7423 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = ((𝐶 ∩ 𝐴) ∨ℋ 𝐵)) |
6 | ineq1 4205 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) | |
7 | 5, 6 | eqeq12d 2748 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ↔ ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))) |
8 | 3, 7 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝐶 → ((𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))) ↔ (𝐵 ⊆ 𝐶 → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
9 | 8 | rspcv 3608 | . . . 4 ⊢ (𝐶 ∈ Cℋ → (∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))) → (𝐵 ⊆ 𝐶 → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
10 | 2, 9 | sylan9 508 | . . 3 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐶 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 → (𝐵 ⊆ 𝐶 → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
11 | 10 | 3impa 1110 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 → (𝐵 ⊆ 𝐶 → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
12 | 11 | imp32 419 | 1 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∩ cin 3947 ⊆ wss 3948 class class class wbr 5148 (class class class)co 7408 Cℋ cch 30177 ∨ℋ chj 30181 𝑀ℋ* cdmd 30215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-iota 6495 df-fv 6551 df-ov 7411 df-dmd 31529 |
This theorem is referenced by: dmdi2 31552 dmdsl3 31563 csmdsymi 31582 mdsymlem1 31651 |
Copyright terms: Public domain | W3C validator |