HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdi Structured version   Visualization version   GIF version

Theorem dmdi 32238
Description: Consequence of the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdi (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀* 𝐵𝐵𝐶)) → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))

Proof of Theorem dmdi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmdbr 32235 . . . . 5 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
21biimpd 229 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 → ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
3 sseq2 3976 . . . . . 6 (𝑥 = 𝐶 → (𝐵𝑥𝐵𝐶))
4 ineq1 4179 . . . . . . . 8 (𝑥 = 𝐶 → (𝑥𝐴) = (𝐶𝐴))
54oveq1d 7405 . . . . . . 7 (𝑥 = 𝐶 → ((𝑥𝐴) ∨ 𝐵) = ((𝐶𝐴) ∨ 𝐵))
6 ineq1 4179 . . . . . . 7 (𝑥 = 𝐶 → (𝑥 ∩ (𝐴 𝐵)) = (𝐶 ∩ (𝐴 𝐵)))
75, 6eqeq12d 2746 . . . . . 6 (𝑥 = 𝐶 → (((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)) ↔ ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵))))
83, 7imbi12d 344 . . . . 5 (𝑥 = 𝐶 → ((𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) ↔ (𝐵𝐶 → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))))
98rspcv 3587 . . . 4 (𝐶C → (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) → (𝐵𝐶 → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))))
102, 9sylan9 507 . . 3 (((𝐴C𝐵C ) ∧ 𝐶C ) → (𝐴 𝑀* 𝐵 → (𝐵𝐶 → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))))
11103impa 1109 . 2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝑀* 𝐵 → (𝐵𝐶 → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))))
1211imp32 418 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀* 𝐵𝐵𝐶)) → ((𝐶𝐴) ∨ 𝐵) = (𝐶 ∩ (𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cin 3916  wss 3917   class class class wbr 5110  (class class class)co 7390   C cch 30865   chj 30869   𝑀* cdmd 30903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-iota 6467  df-fv 6522  df-ov 7393  df-dmd 32217
This theorem is referenced by:  dmdi2  32240  dmdsl3  32251  csmdsymi  32270  mdsymlem1  32339
  Copyright terms: Public domain W3C validator