![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > dmdbr2 | Structured version Visualization version GIF version |
Description: Binary relation expressing the dual modular pair property. This version has a weaker constraint than dmdbr 31817. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmdbr2 | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝑥 ∩ 𝐴) ∨ℋ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmdbr 31817 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))))) | |
2 | chincl 31017 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝑥 ∩ 𝐴) ∈ Cℋ ) | |
3 | 2 | ancoms 457 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → (𝑥 ∩ 𝐴) ∈ Cℋ ) |
4 | 3 | adantlr 711 | . . . . . . . 8 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → (𝑥 ∩ 𝐴) ∈ Cℋ ) |
5 | simplr 765 | . . . . . . . 8 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → 𝐵 ∈ Cℋ ) | |
6 | simpr 483 | . . . . . . . 8 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → 𝑥 ∈ Cℋ ) | |
7 | inss1 4229 | . . . . . . . . 9 ⊢ (𝑥 ∩ 𝐴) ⊆ 𝑥 | |
8 | chlub 31027 | . . . . . . . . . 10 ⊢ (((𝑥 ∩ 𝐴) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → (((𝑥 ∩ 𝐴) ⊆ 𝑥 ∧ 𝐵 ⊆ 𝑥) ↔ ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) ⊆ 𝑥)) | |
9 | 8 | biimpd 228 | . . . . . . . . 9 ⊢ (((𝑥 ∩ 𝐴) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → (((𝑥 ∩ 𝐴) ⊆ 𝑥 ∧ 𝐵 ⊆ 𝑥) → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) ⊆ 𝑥)) |
10 | 7, 9 | mpani 692 | . . . . . . . 8 ⊢ (((𝑥 ∩ 𝐴) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) ⊆ 𝑥)) |
11 | 4, 5, 6, 10 | syl3anc 1369 | . . . . . . 7 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) ⊆ 𝑥)) |
12 | simpll 763 | . . . . . . . 8 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → 𝐴 ∈ Cℋ ) | |
13 | inss2 4230 | . . . . . . . . 9 ⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 | |
14 | chlej1 31028 | . . . . . . . . 9 ⊢ ((((𝑥 ∩ 𝐴) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ (𝑥 ∩ 𝐴) ⊆ 𝐴) → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵)) | |
15 | 13, 14 | mpan2 687 | . . . . . . . 8 ⊢ (((𝑥 ∩ 𝐴) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵)) |
16 | 4, 12, 5, 15 | syl3anc 1369 | . . . . . . 7 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵)) |
17 | 11, 16 | jctird 525 | . . . . . 6 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → (𝐵 ⊆ 𝑥 → (((𝑥 ∩ 𝐴) ∨ℋ 𝐵) ⊆ 𝑥 ∧ ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵)))) |
18 | ssin 4231 | . . . . . 6 ⊢ ((((𝑥 ∩ 𝐴) ∨ℋ 𝐵) ⊆ 𝑥 ∧ ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵)) ↔ ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) ⊆ (𝑥 ∩ (𝐴 ∨ℋ 𝐵))) | |
19 | 17, 18 | imbitrdi 250 | . . . . 5 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) ⊆ (𝑥 ∩ (𝐴 ∨ℋ 𝐵)))) |
20 | eqss 3998 | . . . . . 6 ⊢ (((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ↔ (((𝑥 ∩ 𝐴) ∨ℋ 𝐵) ⊆ (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ∧ (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝑥 ∩ 𝐴) ∨ℋ 𝐵))) | |
21 | 20 | baib 534 | . . . . 5 ⊢ (((𝑥 ∩ 𝐴) ∨ℋ 𝐵) ⊆ (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) → (((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ↔ (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝑥 ∩ 𝐴) ∨ℋ 𝐵))) |
22 | 19, 21 | syl6 35 | . . . 4 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → (𝐵 ⊆ 𝑥 → (((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ↔ (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝑥 ∩ 𝐴) ∨ℋ 𝐵)))) |
23 | 22 | pm5.74d 272 | . . 3 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ((𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))) ↔ (𝐵 ⊆ 𝑥 → (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝑥 ∩ 𝐴) ∨ℋ 𝐵)))) |
24 | 23 | ralbidva 3173 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))) ↔ ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝑥 ∩ 𝐴) ∨ℋ 𝐵)))) |
25 | 1, 24 | bitrd 278 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝑥 ∩ 𝐴) ∨ℋ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ∩ cin 3948 ⊆ wss 3949 class class class wbr 5149 (class class class)co 7413 Cℋ cch 30447 ∨ℋ chj 30451 𝑀ℋ* cdmd 30485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-inf2 9640 ax-cc 10434 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 ax-hilex 30517 ax-hfvadd 30518 ax-hvcom 30519 ax-hvass 30520 ax-hv0cl 30521 ax-hvaddid 30522 ax-hfvmul 30523 ax-hvmulid 30524 ax-hvmulass 30525 ax-hvdistr1 30526 ax-hvdistr2 30527 ax-hvmul0 30528 ax-hfi 30597 ax-his1 30600 ax-his2 30601 ax-his3 30602 ax-his4 30603 ax-hcompl 30720 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-oadd 8474 df-omul 8475 df-er 8707 df-map 8826 df-pm 8827 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-fi 9410 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-acn 9941 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-uz 12829 df-q 12939 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ioo 13334 df-ico 13336 df-icc 13337 df-fz 13491 df-fzo 13634 df-fl 13763 df-seq 13973 df-exp 14034 df-hash 14297 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-clim 15438 df-rlim 15439 df-sum 15639 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-starv 17218 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-hom 17227 df-cco 17228 df-rest 17374 df-topn 17375 df-0g 17393 df-gsum 17394 df-topgen 17395 df-pt 17396 df-prds 17399 df-xrs 17454 df-qtop 17459 df-imas 17460 df-xps 17462 df-mre 17536 df-mrc 17537 df-acs 17539 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18708 df-mulg 18989 df-cntz 19224 df-cmn 19693 df-psmet 21138 df-xmet 21139 df-met 21140 df-bl 21141 df-mopn 21142 df-fbas 21143 df-fg 21144 df-cnfld 21147 df-top 22618 df-topon 22635 df-topsp 22657 df-bases 22671 df-cld 22745 df-ntr 22746 df-cls 22747 df-nei 22824 df-cn 22953 df-cnp 22954 df-lm 22955 df-haus 23041 df-tx 23288 df-hmeo 23481 df-fil 23572 df-fm 23664 df-flim 23665 df-flf 23666 df-xms 24048 df-ms 24049 df-tms 24050 df-cfil 25005 df-cau 25006 df-cmet 25007 df-grpo 30011 df-gid 30012 df-ginv 30013 df-gdiv 30014 df-ablo 30063 df-vc 30077 df-nv 30110 df-va 30113 df-ba 30114 df-sm 30115 df-0v 30116 df-vs 30117 df-nmcv 30118 df-ims 30119 df-dip 30219 df-ssp 30240 df-ph 30331 df-cbn 30381 df-hnorm 30486 df-hba 30487 df-hvsub 30489 df-hlim 30490 df-hcau 30491 df-sh 30725 df-ch 30739 df-oc 30770 df-ch0 30771 df-shs 30826 df-chj 30828 df-dmd 31799 |
This theorem is referenced by: dmdbr4 31824 mdsymlem6 31926 sumdmdii 31933 |
Copyright terms: Public domain | W3C validator |