HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdbr3 Structured version   Visualization version   GIF version

Theorem dmdbr3 30340
Description: Binary relation expressing the dual modular pair property. This version quantifies an equality instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.)
Assertion
Ref Expression
dmdbr3 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dmdbr3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dmdbr 30334 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑦C (𝐵𝑦 → ((𝑦𝐴) ∨ 𝐵) = (𝑦 ∩ (𝐴 𝐵)))))
2 chub2 29543 . . . . . . . . 9 ((𝐵C𝑥C ) → 𝐵 ⊆ (𝑥 𝐵))
32ancoms 462 . . . . . . . 8 ((𝑥C𝐵C ) → 𝐵 ⊆ (𝑥 𝐵))
4 chjcl 29392 . . . . . . . . 9 ((𝑥C𝐵C ) → (𝑥 𝐵) ∈ C )
5 sseq2 3913 . . . . . . . . . . 11 (𝑦 = (𝑥 𝐵) → (𝐵𝑦𝐵 ⊆ (𝑥 𝐵)))
6 ineq1 4106 . . . . . . . . . . . . 13 (𝑦 = (𝑥 𝐵) → (𝑦𝐴) = ((𝑥 𝐵) ∩ 𝐴))
76oveq1d 7206 . . . . . . . . . . . 12 (𝑦 = (𝑥 𝐵) → ((𝑦𝐴) ∨ 𝐵) = (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵))
8 ineq1 4106 . . . . . . . . . . . 12 (𝑦 = (𝑥 𝐵) → (𝑦 ∩ (𝐴 𝐵)) = ((𝑥 𝐵) ∩ (𝐴 𝐵)))
97, 8eqeq12d 2752 . . . . . . . . . . 11 (𝑦 = (𝑥 𝐵) → (((𝑦𝐴) ∨ 𝐵) = (𝑦 ∩ (𝐴 𝐵)) ↔ (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵))))
105, 9imbi12d 348 . . . . . . . . . 10 (𝑦 = (𝑥 𝐵) → ((𝐵𝑦 → ((𝑦𝐴) ∨ 𝐵) = (𝑦 ∩ (𝐴 𝐵))) ↔ (𝐵 ⊆ (𝑥 𝐵) → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵)))))
1110rspcv 3522 . . . . . . . . 9 ((𝑥 𝐵) ∈ C → (∀𝑦C (𝐵𝑦 → ((𝑦𝐴) ∨ 𝐵) = (𝑦 ∩ (𝐴 𝐵))) → (𝐵 ⊆ (𝑥 𝐵) → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵)))))
124, 11syl 17 . . . . . . . 8 ((𝑥C𝐵C ) → (∀𝑦C (𝐵𝑦 → ((𝑦𝐴) ∨ 𝐵) = (𝑦 ∩ (𝐴 𝐵))) → (𝐵 ⊆ (𝑥 𝐵) → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵)))))
133, 12mpid 44 . . . . . . 7 ((𝑥C𝐵C ) → (∀𝑦C (𝐵𝑦 → ((𝑦𝐴) ∨ 𝐵) = (𝑦 ∩ (𝐴 𝐵))) → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵))))
1413ex 416 . . . . . 6 (𝑥C → (𝐵C → (∀𝑦C (𝐵𝑦 → ((𝑦𝐴) ∨ 𝐵) = (𝑦 ∩ (𝐴 𝐵))) → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵)))))
1514com3l 89 . . . . 5 (𝐵C → (∀𝑦C (𝐵𝑦 → ((𝑦𝐴) ∨ 𝐵) = (𝑦 ∩ (𝐴 𝐵))) → (𝑥C → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵)))))
1615ralrimdv 3099 . . . 4 (𝐵C → (∀𝑦C (𝐵𝑦 → ((𝑦𝐴) ∨ 𝐵) = (𝑦 ∩ (𝐴 𝐵))) → ∀𝑥C (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵))))
17 chlejb2 29548 . . . . . . . . . . . . 13 ((𝐵C𝑥C ) → (𝐵𝑥 ↔ (𝑥 𝐵) = 𝑥))
1817biimpa 480 . . . . . . . . . . . 12 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → (𝑥 𝐵) = 𝑥)
1918ineq1d 4112 . . . . . . . . . . 11 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → ((𝑥 𝐵) ∩ 𝐴) = (𝑥𝐴))
2019oveq1d 7206 . . . . . . . . . 10 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥𝐴) ∨ 𝐵))
2118ineq1d 4112 . . . . . . . . . 10 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → ((𝑥 𝐵) ∩ (𝐴 𝐵)) = (𝑥 ∩ (𝐴 𝐵)))
2220, 21eqeq12d 2752 . . . . . . . . 9 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → ((((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵)) ↔ ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
2322biimpd 232 . . . . . . . 8 (((𝐵C𝑥C ) ∧ 𝐵𝑥) → ((((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵)) → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))))
2423ex 416 . . . . . . 7 ((𝐵C𝑥C ) → (𝐵𝑥 → ((((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵)) → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
2524com23 86 . . . . . 6 ((𝐵C𝑥C ) → ((((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵)) → (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
2625ralimdva 3090 . . . . 5 (𝐵C → (∀𝑥C (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵)) → ∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)))))
27 sseq2 3913 . . . . . . 7 (𝑥 = 𝑦 → (𝐵𝑥𝐵𝑦))
28 ineq1 4106 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴) = (𝑦𝐴))
2928oveq1d 7206 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐴) ∨ 𝐵) = ((𝑦𝐴) ∨ 𝐵))
30 ineq1 4106 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 ∩ (𝐴 𝐵)) = (𝑦 ∩ (𝐴 𝐵)))
3129, 30eqeq12d 2752 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵)) ↔ ((𝑦𝐴) ∨ 𝐵) = (𝑦 ∩ (𝐴 𝐵))))
3227, 31imbi12d 348 . . . . . 6 (𝑥 = 𝑦 → ((𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) ↔ (𝐵𝑦 → ((𝑦𝐴) ∨ 𝐵) = (𝑦 ∩ (𝐴 𝐵)))))
3332cbvralvw 3348 . . . . 5 (∀𝑥C (𝐵𝑥 → ((𝑥𝐴) ∨ 𝐵) = (𝑥 ∩ (𝐴 𝐵))) ↔ ∀𝑦C (𝐵𝑦 → ((𝑦𝐴) ∨ 𝐵) = (𝑦 ∩ (𝐴 𝐵))))
3426, 33syl6ib 254 . . . 4 (𝐵C → (∀𝑥C (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵)) → ∀𝑦C (𝐵𝑦 → ((𝑦𝐴) ∨ 𝐵) = (𝑦 ∩ (𝐴 𝐵)))))
3516, 34impbid 215 . . 3 (𝐵C → (∀𝑦C (𝐵𝑦 → ((𝑦𝐴) ∨ 𝐵) = (𝑦 ∩ (𝐴 𝐵))) ↔ ∀𝑥C (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵))))
3635adantl 485 . 2 ((𝐴C𝐵C ) → (∀𝑦C (𝐵𝑦 → ((𝑦𝐴) ∨ 𝐵) = (𝑦 ∩ (𝐴 𝐵))) ↔ ∀𝑥C (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵))))
371, 36bitrd 282 1 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (((𝑥 𝐵) ∩ 𝐴) ∨ 𝐵) = ((𝑥 𝐵) ∩ (𝐴 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  cin 3852  wss 3853   class class class wbr 5039  (class class class)co 7191   C cch 28964   chj 28968   𝑀* cdmd 29002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cc 10014  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774  ax-hilex 29034  ax-hfvadd 29035  ax-hvcom 29036  ax-hvass 29037  ax-hv0cl 29038  ax-hvaddid 29039  ax-hfvmul 29040  ax-hvmulid 29041  ax-hvmulass 29042  ax-hvdistr1 29043  ax-hvdistr2 29044  ax-hvmul0 29045  ax-hfi 29114  ax-his1 29117  ax-his2 29118  ax-his3 29119  ax-his4 29120  ax-hcompl 29237
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-oadd 8184  df-omul 8185  df-er 8369  df-map 8488  df-pm 8489  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-acn 9523  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-fl 13332  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-rlim 15015  df-sum 15215  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-hom 16773  df-cco 16774  df-rest 16881  df-topn 16882  df-0g 16900  df-gsum 16901  df-topgen 16902  df-pt 16903  df-prds 16906  df-xrs 16961  df-qtop 16966  df-imas 16967  df-xps 16969  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-mulg 18443  df-cntz 18665  df-cmn 19126  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-cn 22078  df-cnp 22079  df-lm 22080  df-haus 22166  df-tx 22413  df-hmeo 22606  df-fil 22697  df-fm 22789  df-flim 22790  df-flf 22791  df-xms 23172  df-ms 23173  df-tms 23174  df-cfil 24106  df-cau 24107  df-cmet 24108  df-grpo 28528  df-gid 28529  df-ginv 28530  df-gdiv 28531  df-ablo 28580  df-vc 28594  df-nv 28627  df-va 28630  df-ba 28631  df-sm 28632  df-0v 28633  df-vs 28634  df-nmcv 28635  df-ims 28636  df-dip 28736  df-ssp 28757  df-ph 28848  df-cbn 28898  df-hnorm 29003  df-hba 29004  df-hvsub 29006  df-hlim 29007  df-hcau 29008  df-sh 29242  df-ch 29256  df-oc 29287  df-ch0 29288  df-shs 29343  df-chj 29345  df-dmd 30316
This theorem is referenced by:  dmdbr6ati  30458
  Copyright terms: Public domain W3C validator